A Geometric Approach to Gibbs Energy Landscapes and Optimal DNA Codeword Design

Author(s):  
Max H. Garzon ◽  
Kiran C. Bobba
Author(s):  
Max H. Garzon ◽  
Kiran C. Bobba

DNA codeword design has been a fundamental problem since the early days of DNA computing. The problem calls for finding large sets of single DNA strands that do not crosshybridize to themselves, to each other or to others' complements. Such strands represent so-called domains, particularly in the language of chemical reaction networks (CRNs). The problem has shown to be of interest in other areas as well, including DNA memories and phylogenetic analyses because of their error correction and prevention properties. In prior work, a theoretical framework to analyze this problem has been developed and natural and simple versions of Codeword Design have been shown to be NP-complete using any single reasonable metric that approximates the Gibbs energy, thus practically making it very difficult to find any general procedure for finding such maximal sets exactly and efficiently. In this framework, codeword design is partially reduced to finding large sets of strands maximally separated in DNA spaces and, therefore, the size of such sets depends on the geometry of these spaces. Here, the authors describe in detail a new general technique to embed them in Euclidean spaces in such a way that oligonucleotides with high (low, respectively) hybridization affinity are mapped to neighboring (remote, respectively) points in a geometric lattice. This embedding materializes long-held metaphors about codeword design in analogies with error-correcting code design in information theory in terms of sphere packing and leads to designs that are in some cases known to be provably nearly optimal for small oligonucleotide sizes, whenever the corresponding spherical codes in Euclidean spaces are known to be so. It also leads to upper and lower bounds on estimates of the size of optimal codes of size under 20-mers, as well as to a few infinite families of DNA strand lengths, based on estimates of the kissing (or contact) number for sphere codes in high-dimensional Euclidean spaces. Conversely, the authors show how solutions to DNA codeword design obtained by experimental or other means can also provide solutions to difficult spherical packing geometric problems via these approaches. Finally, the reduction suggests a tool to provide some insight into the approximate structure of the Gibbs energy landscapes, which play a primary role in the design and implementation of biomolecular programs.


Author(s):  
S. Buonchristiano ◽  
C. P. Rourke ◽  
B. J. Sanderson

1984 ◽  
Vol 45 (C6) ◽  
pp. C6-87-C6-94
Author(s):  
H. Reinhardt ◽  
R. Balian ◽  
Y. Alhassid

1989 ◽  
Vol 17 (2) ◽  
pp. 86-99 ◽  
Author(s):  
I. Gardner ◽  
M. Theves

Abstract During a cornering maneuver by a vehicle, high forces are exerted on the tire's footprint and in the contact zone between the tire and the rim. To optimize the design of these components, a method is presented whereby the forces at the tire-rim interface and between the tire and roadway may be predicted using finite element analysis. The cornering tire is modeled quasi-statically using a nonlinear geometric approach, with a lateral force and a slip angle applied to the spindle of the wheel to simulate the cornering loads. These values were obtained experimentally from a force and moment machine. This procedure avoids the need for a costly dynamic analysis. Good agreement was obtained with experimental results for self-aligning torque, giving confidence in the results obtained in the tire footprint and at the rim. The model allows prediction of the geometry and of the pressure distributions in the footprint, since friction and slip effects in this area were considered. The model lends itself to further refinement for improved accuracy and additional applications.


2019 ◽  
Vol 64 (12) ◽  
pp. 1274-1280
Author(s):  
L. P. Ogorodova ◽  
Yu. D. Gritsenko ◽  
M. F. Vigasina ◽  
A. Yu. Bychkov ◽  
D. A. Ksenofontov ◽  
...  

A thermochemical study of natural calcium and magnesium orthosilicate ─ monticellite (Ca1.00Mg0.95)[SiO4] (Khabarovsk Territory, Russia) was carried out on the Tian-Calvet microcalorimeter. The enthalpy of formation from the elements fHоel(298.15 K) = -2238.4 4.5 kJ / mol was determined by the method of high-temperature melt solution calorimetry. The enthalpy and Gibbs energy of formation of monticellite of the theoretical composition of CaMg[SiO4] are calculated: fH0el(298.15 K) = -2248.4 4.5 kJ/mol and fG0el(298.15 K) = -2130.5 4.5 kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document