free energy landscapes
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 84)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Joshua Pajak ◽  
Gaurav Arya

The bacterial FtsK motor harvests energy from ATP to translocate double-stranded DNA during cell division. Here, we probe the molecular mechanisms underlying coordinated DNA translocation in FtsK by performing long timescale simulations of its hexameric assembly and individual subunits. From these simulations we predict signaling pathways that connect the ATPase active site to DNA-gripping residues, which allows the motor to coordinate its translocation activity with its ATPase activity. Additionally, we utilize well-tempered metadynamics simulations to compute free-energy landscapes that elucidate the extended-to-compact transition involved in force generation. We show that nucleotide binding promotes a compact conformation of a motor subunit, whereas the apo subunit is flexible. Together, our results support a mechanism whereby each ATP-bound subunit of the motor conforms to the helical pitch of DNA, and ATP hydrolysis/product release causes a subunit to lose grip of DNA. By ordinally engaging and disengaging with DNA, the FtsK motor unidirectionally translocates DNA.


RSC Advances ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1742-1757
Author(s):  
Jianzhong Chen ◽  
Qingkai Zeng ◽  
Wei Wang ◽  
Qingquan Hu ◽  
Huayin Bao

Q61 mutants induce structural disorder of the switch domain in KRAS and affect binding of KRAS to effectors.


Author(s):  
Dongdong Wang ◽  
Yanze Wang ◽  
Junhan Chang ◽  
Linfeng Zhang ◽  
Han Wang ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10203
Author(s):  
Milan H. Patel ◽  
Monika B. Dolinska ◽  
Yuri V. Sergeev

Oculocutaneous albinism type 3 (OCA3) is an autosomal recessive disorder caused by mutations in the TYRP1 gene. Tyrosinase-related protein 1 (Tyrp1) is involved in eumelanin synthesis, catalyzing the oxidation of 5,6-dihydroxyindole-2-carboxylic acid oxidase (DHICA) to 5,6-indolequinone-2-carboxylic acid (IQCA). Here, for the first time, four OCA3-causing mutations of Tyrp1, C30R, H215Y, D308N, and R326H, were investigated computationally to understand Tyrp1 protein stability and catalytic activity. Using the Tyrp1 crystal structure (PDB:5M8L), global mutagenesis was conducted to evaluate mutant protein stability. Consistent with the foldability parameter, C30R and H215Y should exhibit greater instability, and two other mutants, D308N and R326H, are expected to keep a native conformation. SDS-PAGE and Western blot analysis of the purified recombinant proteins confirmed that the foldability parameter correctly predicted the effect of mutations critical for protein stability. Further, the mutant variant structures were built and simulated for 100 ns to generate free energy landscapes and perform docking experiments. Free energy landscapes formed by Y362, N378, and T391 indicate that the binding clefts of C30R and H215Y mutants are larger than the wild-type Tyrp1. In docking simulations, the hydrogen bond and salt bridge interactions that stabilize DHICA in the active site remain similar among Tyrp1, D308N, and R326H. However, the strengths of these interactions and stability of the docked ligand may decrease proportionally to mutation severity due to the larger and less well-defined natures of the binding clefts in mutants. Mutational perturbations in mutants that are not unfolded may result in allosteric alterations to the active site, reducing the stability of protein-ligand interactions.


ACS Omega ◽  
2021 ◽  
Author(s):  
Yichao Wu ◽  
Ruixin Qian ◽  
Yan Yang ◽  
Yuebiao Sheng ◽  
Wenfei Li ◽  
...  

2021 ◽  
Author(s):  
Huixia Lu ◽  
Jordi Marti

KRas proteins are the largest family of mutated Ras isoforms, participating in a wide variety of cancers. Due to their importance, large effort is being carried out on drug development by small-molecule inhibitors. However, understanding protein conformational variability remains a challenge in drug discovery. In the case of the Ras family, their multiple conformational states can affect the binding of potential drug inhibitors. To overcome this challenge, we propose a computational framework based on combined all-atom Molecular Dynamics and Metadynamics simulations able to accurately access conformational variants of the target protein. We tested the methodology using a G12D mutated GTP bound oncogenic KRas-4B protein located at the interface of a DOPC/DOPS/cholesterol model anionic cell membrane. Two main orientations of KRas-4B at the anionic membrane have been obtained and explored. The corresponding angles have been taken as reliable reaction coordinates so that free-energy landscapes have been obtained by well-tempered metadynamics simulations, revealing the local and global minima of KRas-4B binding to the cell membrane, unvealing reactive paths of the system between the two preferential orientations and highlighting opportunities for targeting the unique metastable states through the identification of druggable pockets.


2021 ◽  
Vol 118 (28) ◽  
pp. e2106380118
Author(s):  
Kuo Chen ◽  
Murugappan Muthukumar

The single most intrinsic property of nonrigid polymer chains is their ability to adopt enormous numbers of chain conformations, resulting in huge conformational entropy. When such macromolecules move in media with restrictive spatial constraints, their trajectories are subjected to reductions in their conformational entropy. The corresponding free energy landscapes are interrupted by entropic barriers separating consecutive spatial domains which function as entropic traps where macromolecules can adopt their conformations more favorably. Movement of macromolecules by negotiating a sequence of entropic barriers is a common paradigm for polymer dynamics in restrictive media. However, if a single chain is simultaneously trapped by many entropic traps, it has recently been suggested that the macromolecule does not undergo diffusion and is localized into a topologically frustrated dynamical state, in apparent violation of Einstein’s theorem. Using fluorescently labeled λ-DNA as the guest macromolecule embedded inside a similarly charged hydrogel with more than 95% water content, we present direct evidence for this new state of polymer dynamics at intermediate confinements. Furthermore, using a combination of theory and experiments, we measure the entropic barrier for a single macromolecule as several tens of thermal energy, which is responsible for the extraordinarily long extreme metastability. The combined theory–experiment protocol presented here is a determination of single-molecule entropic barriers in polymer dynamics. Furthermore, this method offers a convenient general procedure to quantify the underlying free energy landscapes behind the ubiquitous phenomenon of movement of single charged macromolecules in crowded environments.


Sign in / Sign up

Export Citation Format

Share Document