Pathway-Based Multi-class Classification of Lung Cancer

Author(s):  
Worrawat Engchuan ◽  
Jonathan H. Chan
2022 ◽  
Vol 2161 (1) ◽  
pp. 012045
Author(s):  
Ishan Devdatt Kawathekar ◽  
Anu Shaju Areeckal

Abstract Lung cancer ranks very high on a global index for cancer-related casualties. With early detection of lung cancer, the rate of survival increases to 80-90%. The standard method for diagnosing lung cancer from Computed Tomography (CT) scans is by manual annotation and detection of the cancerous regions, which is a tedious task for radiologists. This paper proposes a machine learning approach for multi-class classification of the lung nodules into solid, semi-solid, and Ground Glass Object texture classes. We employ feature extraction techniques, such as gray-level co-occurrence matrix, Gabor filters, and local binary pattern, and validate the performance on the LNDb dataset. The best performing classifier displays an accuracy of 94% and an F1-score of 0.92. The proposed approach was compared with related work using the same dataset. The results are promising, and the proposed method can be used to diagnose lung cancer accurately.


Author(s):  
Javeria Amin ◽  
Muhammad Sharif ◽  
Mussarat Yasmin
Keyword(s):  

2020 ◽  
Vol 14 ◽  
Author(s):  
Lahari Tipirneni ◽  
Rizwan Patan

Abstract:: Millions of deaths all over the world are caused by breast cancer every year. It has become the most common type of cancer in women. Early detection will help in better prognosis and increases the chance of survival. Automating the classification using Computer-Aided Diagnosis (CAD) systems can make the diagnosis less prone to errors. Multi class classification and Binary classification of breast cancer is a challenging problem. Convolutional neural network architectures extract specific feature descriptors from images, which cannot represent different types of breast cancer. This leads to false positives in classification, which is undesirable in disease diagnosis. The current paper presents an ensemble Convolutional neural network for multi class classification and Binary classification of breast cancer. The feature descriptors from each network are combined to produce the final classification. In this paper, histopathological images are taken from publicly available BreakHis dataset and classified between 8 classes. The proposed ensemble model can perform better when compared to the methods proposed in the literature. The results showed that the proposed model could be a viable approach for breast cancer classification.


Author(s):  
Balajee Alphonse ◽  
Venkatesan Rajagopal ◽  
Sudhakar Sengan ◽  
Kousalya Kittusamy ◽  
Amudha Kandasamy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document