Segmentation and Classification of Lung Cancer: A Review

Author(s):  
Javeria Amin ◽  
Muhammad Sharif ◽  
Mussarat Yasmin
Keyword(s):  
PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88300 ◽  
Author(s):  
Bi-Qing Li ◽  
Jin You ◽  
Tao Huang ◽  
Yu-Dong Cai

2014 ◽  
Vol 9 (11) ◽  
pp. 1618-1624 ◽  
Author(s):  
Ramón Rami-Porta ◽  
Vanessa Bolejack ◽  
Dorothy J. Giroux ◽  
Kari Chansky ◽  
John Crowley ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Margarita Kirienko ◽  
Martina Sollini ◽  
Giorgia Silvestri ◽  
Serena Mognetti ◽  
Emanuele Voulaz ◽  
...  

Aim. To develop an algorithm, based on convolutional neural network (CNN), for the classification of lung cancer lesions as T1-T2 or T3-T4 on staging fluorodeoxyglucose positron emission tomography (FDG-PET)/CT images. Methods. We retrospectively selected a cohort of 472 patients (divided in the training, validation, and test sets) submitted to staging FDG-PET/CT within 60 days before biopsy or surgery. TNM system seventh edition was used as reference. Postprocessing was performed to generate an adequate dataset. The input of CNNs was a bounding box on both PET and CT images, cropped around the lesion centre. The results were classified as Correct (concordance between reference and prediction) and Incorrect (discordance between reference and prediction). Accuracy (Correct/[Correct + Incorrect]), recall (Correctly predicted T3-T4/[all T3-T4]), and specificity (Correctly predicted T1-T2/[all T1-T2]), as commonly defined in deep learning models, were used to evaluate CNN performance. The area under the curve (AUC) was calculated for the final model. Results. The algorithm, composed of two networks (a “feature extractor” and a “classifier”), developed and tested achieved an accuracy, recall, specificity, and AUC of 87%, 69%, 69%, and 0.83; 86%, 77%, 70%, and 0.73; and 90%, 47%, 67%, and 0.68 in the training, validation, and test sets, respectively. Conclusion. We obtained proof of concept that CNNs can be used as a tool to assist in the staging of patients affected by lung cancer.


2017 ◽  
pp. 713-735
Author(s):  
Orna Barash ◽  
Nir Peled ◽  
Ulrike Tisch ◽  
Paul A. Bunn ◽  
Fred R. Hirsch ◽  
...  

Lung cancer is a serious illness which leads to increased mortality rate globally. The identification of lung cancer at the beginning stage is the probable method of improving the survival rate of the patients. Generally, Computed Tomography (CT) scan is applied for finding the location of the tumor and determines the stage of cancer. Existing works has presented an effective diagnosis classification model for CT lung images. This paper designs an effective diagnosis and classification model for CT lung images. The presented model involves different stages namely pre-processing, segmentation, feature extraction and classification. The initial stage includes an adaptive histogram based equalization (AHE) model for image enhancement and bilateral filtering (BF) model for noise removal. The pre-processed images are fed into the second stage of watershed segmentation model for effectively segment the images. Then, a deep learning based Xception model is applied for prominent feature extraction and the classification takes place by the use of logistic regression (LR) classifier. A comprehensive simulation is carried out to ensure the effective classification of the lung CT images using a benchmark dataset. The outcome implied the outstanding performance of the presented model on the applied test images.


Sign in / Sign up

Export Citation Format

Share Document