The Location Method of the Main Hand-Shape Feature Points

Author(s):  
Weiqi Yuan ◽  
Lantao Jing
2011 ◽  
Vol 30 (12) ◽  
pp. 3311-3313
Author(s):  
Wei-qi YUAN ◽  
Yan LI

2010 ◽  
Vol 7 (1) ◽  
pp. 63-74
Author(s):  
Xiaopeng Sun ◽  
J. Pan ◽  
Xiaopeng Wei

Skeleton of 3D mesh is a fundamental shape feature, and is useful for shape description and other many applications in 3D Digital Geometry Processing. This paper presents a novel skeleton extraction algorithm based on feature point and core extraction by the Multidimensional scaling (MDS) transformation. The algorithm first straights the folded prominent branch up, as well as the prominent shape feature points of mesh are computed, a meaningful segmentation is applied under the direction of feature points. The Node-ring of all segmented components is defined by discrete geodesic path on mesh surface, and then the skeleton of every segmented component is defined as the link of the Node-ring's center. As to the core component without prominent feature points, principal curve is used to fit its skeleton. Our algorithm is simple, and invariant both to the pose of the mesh and to the different proportions of model's components.


Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document