A Multiple Model Probability Hypothesis Density Tracker for Time-Lapse Cell Microscopy Sequences

Author(s):  
Seyed Hamid Rezatofighi ◽  
Stephen Gould ◽  
Ba-Ngu Vo ◽  
Katarina Mele ◽  
William E. Hughes ◽  
...  
2010 ◽  
Vol 36 (7) ◽  
pp. 939-950 ◽  
Author(s):  
Feng LIAN ◽  
Chong-Zhao HAN ◽  
Wei-Feng LIU ◽  
Xiang-Hui YUAN

2020 ◽  
Author(s):  
Weihua Wu

<p><a></a><a></a><a>For a ground moving target indication (GMTI) radar, the presence of </a><a></a><a></a><a></a><a>Doppler blind zone (DBZ)</a> results in many short tracks with frequent label switching, which seriously deteriorates the tracking performance. When the DBZ masking is coupled with targets maneuvering, tracking multiple maneuvering targets hidden in the DBZ becomes very challenging, which is reflected in the fact that there is no public research on this issue. To overcome this complicated problem, we propose a practical and fully functional GMTI multi-maneuvering-target tracker based on the multiple model probability hypothesis density (MM-PHD) filter. Unlike the standard MM-PHD filter, the proposed tracker utilizes the Doppler information and incorporates the minimum detectable velocity (MDV) to suppress the DBZ masking. Furthermore, to cope with the problems of the fixed initiation and no label output of the standard MM-PHD filter, the resulting MM-PHD filter with the Doppler and MDV information is augmented with measurement-driven adaptive track initiation and track label propagation, which are necessary for a practical tracker and also required for evaluating the overall GMTI tracking performance. Finally, numerical examples show that the proposed tracker outperforms significantly the existing ones, thus verifying its effectiveness.</p> <p> </p>


2020 ◽  
Author(s):  
Weihua Wu

<p><a></a><a></a><a>For a ground moving target indication (GMTI) radar, the presence of </a><a></a><a></a><a></a><a>Doppler blind zone (DBZ)</a> results in many short tracks with frequent label switching, which seriously deteriorates the tracking performance. When the DBZ masking is coupled with targets maneuvering, tracking multiple maneuvering targets hidden in the DBZ becomes very challenging, which is reflected in the fact that there is no public research on this issue. To overcome this complicated problem, we propose a practical and fully functional GMTI multi-maneuvering-target tracker based on the multiple model probability hypothesis density (MM-PHD) filter. Unlike the standard MM-PHD filter, the proposed tracker utilizes the Doppler information and incorporates the minimum detectable velocity (MDV) to suppress the DBZ masking. Furthermore, to cope with the problems of the fixed initiation and no label output of the standard MM-PHD filter, the resulting MM-PHD filter with the Doppler and MDV information is augmented with measurement-driven adaptive track initiation and track label propagation, which are necessary for a practical tracker and also required for evaluating the overall GMTI tracking performance. Finally, numerical examples show that the proposed tracker outperforms significantly the existing ones, thus verifying its effectiveness.</p> <p> </p>


SPE Journal ◽  
2006 ◽  
Vol 11 (04) ◽  
pp. 418-430 ◽  
Author(s):  
Karl D. Stephen ◽  
Juan Soldo ◽  
Colin Macbeth ◽  
Mike A. Christie

Summary Time-lapse (or 4D) seismic is increasingly being used as a qualitative description of reservoir behavior for management and decision-making purposes. When combined quantitatively with geological and flow modeling as part of history matching, improved predictions of reservoir production can be obtained. Here, we apply a method of multiple-model history matching based on simultaneous comparison of spatial data offered by seismic as well as individual well-production data. Using a petroelastic transform and suitable rescaling, forward-modeled simulations are converted into predictions of seismic impedance attributes and compared to observed data by calculation of a misfit. A similar approach is applied to dynamic well data. This approach improves on gradient-based methods by avoiding entrapment in local minima. We demonstrate the method by applying it to the UKCS Schiehallion reservoir, updating the operator's model. We consider a number of parameters to be uncertain. The reservoir's net to gross is initially updated to better match the observed baseline acoustic impedance derived from the RMS amplitudes of the migrated stack. We then history match simultaneously for permeability, fault transmissibility multipliers, and the petroelastic transform parameters. Our results show a good match to the observed seismic and well data with significant improvement to the base case. Introduction Reservoir management requires tools such as simulation models to predict asset behavior. History matching is often employed to alter these models so that they compare favorably to observed well rates and pressures. This well information is obtained at discrete locations and thus lacks the areal coverage necessary to accurately constrain dynamic reservoir parameters such as permeability and the location and effect of faults. Time-lapse seismic captures the effect of pressure and saturation on seismic impedance attributes, giving 2D maps or 3D volumes of the missing information. The process of seismic history matching attempts to overlap the benefits of both types of information to improve estimates of the reservoir model parameters. We first present an automated multiple-model history-matching method that includes time-lapse seismic along with production data, based on an integrated workflow (Fig. 1). It improves on the classical approach, wherein the engineer manually adjusts parameters in the simulation model. Our method also improves on gradient-based methods, such as Steepest Descent, Gauss-Newton, and Levenberg-Marquardt algorithms (e.g., Lépine et al. 1999;Dong and Oliver 2003; Gosselin et al. 2003; Mezghani et al. 2004), which are good at finding local likelihood maxima but can fail to find the global maximum. Our method is also faster than stochastic methods such as genetic algorithms and simulated annealing, which often require more simulations and may have slower convergence rates. Finally, multiple models are generated, enabling posterior uncertainty analysis in a Bayesian framework (as in Stephen and MacBeth 2006a).


2021 ◽  
Vol 13 (15) ◽  
pp. 2963
Author(s):  
Lifan Sun ◽  
Haofang Yu ◽  
Jian Lan ◽  
Zhumu Fu ◽  
Zishu He ◽  
...  

With the increased resolution capability of modern sensors, an object should be considered as extended if the target extent is larger than the sensor resolution. Multiple maneuvering extended object tracking (MMEOT) uses not only measurements of the target centroid but also high-resolution sensor measurements which may resolve individual features or measurement sources. MMEOT aims to jointly estimate object number, centroid states, and extension states. However, unknown and time-varying maneuvers of multiple objects produce difficulties in terms of accurate estimation. For multiple maneuvering star-convex extended objects using random hypersurface models (RHMs) in particular, their complex maneuvering behaviors are difficult to be described accurately and handled effectively. To deal with these problems, this paper proposes an interacting multiple model Gaussian mixture probability hypothesis density (IMM-GMPHD) filter for multiple maneuvering extended object tracking. In this filter, linear maneuver models derived from RHMs are utilized to describe different turn maneuvers of star-convex extended objects accurately. Based on these, an IMM-GMPHD filtering recursive form is given by deriving new update and merging formulas of model probabilities for extended objects. Gaussian mixture components of different posterior intensities are also pruned and merged accurately. More importantly, the geometrical significance of object extension states is fully considered and exploited in this filter. This contributes to the accurate estimation of object extensions. Simulation results demonstrate the effectiveness of the proposed tracking approach—it can obtain the joint estimation of object number, kinematic states, and object extensions in complex maneuvering scenarios.


Sign in / Sign up

Export Citation Format

Share Document