Modular forms of weight one and Galois representations

Author(s):  
Jean-Pierre Serre
2014 ◽  
Vol 2 ◽  
Author(s):  
PAYMAN L. KASSAEI ◽  
SHU SASAKI ◽  
YICHAO TIAN

AbstractWe extend the modularity lifting result of P. Kassaei (‘Modularity lifting in parallel weight one’,J. Amer. Math. Soc.26 (1) (2013), 199–225) to allow Galois representations with some ramification at $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$. We also prove modularity mod 5 of certain Galois representations. We use these results to prove new cases of the strong Artin conjecture over totally real fields in which 5 is unramified. As an ingredient of the proof, we provide a general result on the automatic analytic continuation of overconvergent $p$-adic Hilbert modular forms of finite slope which substantially generalizes a similar result in P. Kassaei (‘Modularity lifting in parallel weight one’, J. Amer. Math. Soc.26 (1) (2013), 199–225).


Author(s):  
Sara Arias-de-Reyna ◽  
François Legrand ◽  
Gabor Wiese
Keyword(s):  

Author(s):  
Johan Bosman

This chapter discusses several aspects of the practical side of computing with modular forms and Galois representations. It starts by discussing computations with modular forms, and from there work towards the computation of polynomials that give the Galois representations associated with modular forms. Throughout, the chapter denotes the space of cusp forms of weight k, group Γ‎₁(N), and character ε‎ by Sₖ(N, ε‎).


Author(s):  
Jean-Marc Couveignes ◽  
Bas Edixhoven

This chapter provides the first, informal description of the algorithms. It explains how the computation of the Galois representations V attached to modular forms over finite fields should proceed. The essential step is to approximate the minimal polynomial P of (3.1) with sufficient precision so that P itself can be obtained.


1982 ◽  
Vol 85 ◽  
pp. 213-221 ◽  
Author(s):  
Toyokazu Hiramatsu

Let Γ be a fuchsian group of the first kind not containing the element . We shall denote by d0 the number of linearly independent automorphic forms of weight 1 for Γ. It would be interesting to have a certain formula for d0. But, Hejhal said in his Lecture Notes 548, it is impossible to calculate d0 using only the basic algebraic properties of Γ. On the other hand, Serre has given such a formula of d0 recently in a paper delivered at the Durham symposium ([7]). His formula is closely connected with 2-dimensional Galois representations.


Sign in / Sign up

Export Citation Format

Share Document