scholarly journals Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case

2014 ◽  
Vol 2 ◽  
Author(s):  
PAYMAN L. KASSAEI ◽  
SHU SASAKI ◽  
YICHAO TIAN

AbstractWe extend the modularity lifting result of P. Kassaei (‘Modularity lifting in parallel weight one’,J. Amer. Math. Soc.26 (1) (2013), 199–225) to allow Galois representations with some ramification at $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$. We also prove modularity mod 5 of certain Galois representations. We use these results to prove new cases of the strong Artin conjecture over totally real fields in which 5 is unramified. As an ingredient of the proof, we provide a general result on the automatic analytic continuation of overconvergent $p$-adic Hilbert modular forms of finite slope which substantially generalizes a similar result in P. Kassaei (‘Modularity lifting in parallel weight one’, J. Amer. Math. Soc.26 (1) (2013), 199–225).

2013 ◽  
Vol 65 (2) ◽  
pp. 403-466
Author(s):  
Jeanine Van Order

AbstractWe construct a bipartite Euler systemin the sense ofHoward forHilbertmodular eigenforms of parallel weight two over totally real fields, generalizing works of Bertolini–Darmon, Longo, Nekovar, Pollack–Weston, and others. The construction has direct applications to Iwasawa's main conjectures. For instance, it implies inmany cases one divisibility of the associated dihedral or anticyclotomicmain conjecture, at the same time reducing the other divisibility to a certain nonvanishing criterion for the associated p-adic L-functions. It also has applications to cyclotomic main conjectures for Hilbert modular forms over CM fields via the technique of Skinner and Urban.


2019 ◽  
Vol 15 (03) ◽  
pp. 479-504 ◽  
Author(s):  
Christopher Birkbeck

We use results by Chenevier to interpolate the classical Jacquet–Langlands correspondence for Hilbert modular forms, which gives us an extension of Chenevier’s results to totally real fields. From this we obtain an isomorphism between eigenvarieties attached to Hilbert modular forms and those attached to modular forms on a totally definite quaternion algebra over a totally real field of even degree.


2017 ◽  
Vol 153 (9) ◽  
pp. 1769-1778 ◽  
Author(s):  
Fred Diamond ◽  
Payman L Kassaei

We consider mod $p$ Hilbert modular forms associated to a totally real field of degree $d$ in which $p$ is unramified. We prove that every such form arises by multiplication by partial Hasse invariants from one whose weight (a $d$-tuple of integers) lies in a certain cone contained in the set of non-negative weights, answering a question of Andreatta and Goren. The proof is based on properties of the Goren–Oort stratification on mod $p$ Hilbert modular varieties established by Goren and Oort, and Tian and Xiao.


2018 ◽  
Vol 19 (2) ◽  
pp. 281-306 ◽  
Author(s):  
Mladen Dimitrov ◽  
Gabor Wiese

The main result of this article states that the Galois representation attached to a Hilbert modular eigenform defined over $\overline{\mathbb{F}}_{p}$ of parallel weight 1 and level prime to $p$ is unramified above $p$. This includes the important case of eigenforms that do not lift to Hilbert modular forms in characteristic 0 of parallel weight 1. The proof is based on the observation that parallel weight 1 forms in characteristic $p$ embed into the ordinary part of parallel weight $p$ forms in two different ways per prime dividing $p$, namely via ‘partial’ Frobenius operators.


Author(s):  
Fred Diamond

Abstract We carry out a thorough study of weight-shifting operators on Hilbert modular forms in characteristic p, generalising the author’s prior work with Sasaki to the case where p is ramified in the totally real field. In particular, we use the partial Hasse invariants and Kodaira–Spencer filtrations defined by Reduzzi and Xiao to improve on Andreatta and Goren’s construction of partial $\Theta $ -operators, obtaining ones whose effect on weights is optimal from the point of view of geometric Serre weight conjectures. Furthermore, we describe the kernels of partial $\Theta $ -operators in terms of images of geometrically constructed partial Frobenius operators. Finally, we apply our results to prove a partial positivity result for minimal weights of mod p Hilbert modular forms.


1983 ◽  
Vol 74 (1) ◽  
pp. 1-42 ◽  
Author(s):  
J. D. Rogawski ◽  
J. B. Tunnell

2016 ◽  
Vol 12 (03) ◽  
pp. 691-723 ◽  
Author(s):  
Ren-He Su

In 1975, Cohen constructed a kind of one-variable modular forms of half-integral weight, say [Formula: see text], whose [Formula: see text]th Fourier coefficient only occurs when [Formula: see text] is congruent to 0 or 1 modulo 4. The space of modular forms whose Fourier coefficients have the above property is called Kohnen plus space, initially introduced by Kohnen in 1980. Recently, Hiraga and Ikeda generalized the plus space to the spaces for half-integral weight Hilbert modular forms with respect to general totally real number fields. The [Formula: see text]th Fourier coefficients [Formula: see text] of a Hilbert modular form of parallel weight [Formula: see text] lying in the generalized Kohnen plus space does not vanish only if [Formula: see text] is congruent to a square modulo 4. In this paper, we use an adelic way to construct Eisenstein series of parallel half-integral weight belonging to the generalized Kohnen plus spaces and give an explicit form for their Fourier coefficients. These series give a generalization of the one introduced by Cohen. Moreover, we show that the Kohnen plus space is generated by the cusp forms and the Eisenstein series we constructed as a vector space over [Formula: see text].


2012 ◽  
Vol 11 (3) ◽  
pp. 659-693 ◽  
Author(s):  
Tong Liu

AbstractLet p be a prime. We construct and study integral and torsion invariants, such as integral and torsion Weil–Deligne representations, associated to potentially semi-stable representations and torsion potentially semi-stable representations respectively. As applications, we prove the compatibility between local Langlands correspondence and Fontaine's construction for Galois representations attached to Hilbert modular forms, and Néron–Ogg–Shafarevich criterion of finite level for potentially semi-stable representations.


2013 ◽  
Vol 142 (3-4) ◽  
pp. 513-524 ◽  
Author(s):  
Baskar Balasubramanyam ◽  
Eknath Ghate ◽  
Vinayak Vatsal

Sign in / Sign up

Export Citation Format

Share Document