Numerical Integration of Systems with Unilateral Constraints

Author(s):  
G. P. Ostermeyer
2020 ◽  
pp. 107754632094544
Author(s):  
Surya Samukham ◽  
S. N. Khaderi ◽  
C. P. Vyasarayani

This work deals with the modeling of nonsmooth vibro-impact motion of a continuous structure against a rigid distributed obstacle. Galerkin’s approach is used to approximate the solutions of the governing partial differential equations of the structure, which results in a system of ordinary differential equations. When these ordinary differential equations are subjected to unilateral constraints and velocity jump conditions, one must use an event detection algorithm to calculate the time of impact accurately. Event detection in the presence of multiple simultaneous impacts is a computationally demanding task. Ivanov (Ivanov A 1993 “Analytical methods in the theory of vibro-impact systems”. Journal of Applied Mathematics and Mechanics 57(2): pp. 221–236.) proposed a nonsmooth transformation for a vibro-impacting multi-degree-of-freedom system subjected to a single unilateral constraint. This transformation eliminates the unilateral constraints from the problem and, therefore, no event detection is required during numerical integration. This nonsmooth transformation leads to sign function nonlinearities in the equations of motion. However, they can be easily accounted for during numerical integration. Ivanov used his transformation to make analytical calculations for the stability and bifurcations of vibro-impacting motions; however, he did not explore its application for simulating distributed collisions in spatially continuous structures. We adopt Ivanov’s transformation to deal with multiple unilateral constraints in spatially continuous structures. Also, imposing the velocity jump conditions exactly in the modal coordinates is nontrivial and challenging. Therefore, in this work, we use a modal-physical transformation to convert the system from modal to physical coordinates on a spatially discretized grid. We then apply Ivanov’s transformation on the physical system to simulate the vibro-impact motion of the structure. The developed method is demonstrated by modeling the distributed collision of a nonlinear string against a rigid distributed surface. For validation, we compare our results with the well-known penalty approach.


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


2019 ◽  
Vol 51 (04) ◽  
pp. 745-750
Author(s):  
A.A BHATTI ◽  
M.S CHANDIO ◽  
R.A MEMON ◽  
M.M SHAIKH

Sign in / Sign up

Export Citation Format

Share Document