On the F p -Linearity of the Generalized Gray Map Image of a $${Z_{{p^{k+1}}}}$$ -Linear Code

Author(s):  
H. Tapia-Recillas ◽  
G. Vega
2015 ◽  
Vol 36 ◽  
pp. 81-97 ◽  
Author(s):  
Ziling Heng ◽  
Qin Yue

2018 ◽  
Vol 11 (02) ◽  
pp. 1850026
Author(s):  
Pramod Kumar Kewat ◽  
Sarika Kushwaha

Let [Formula: see text], where [Formula: see text], [Formula: see text], [Formula: see text] is a prime and [Formula: see text] is a positive integer. We define a gray map from a linear code of length [Formula: see text] over the ring [Formula: see text] to a linear code of length [Formula: see text] over the field [Formula: see text]. In this paper, we characterize the gray images of [Formula: see text]-constacyclic codes of an arbitrary length over the ring [Formula: see text] in terms of quasicyclic codes over [Formula: see text]. We obtain some optimal linear codes over [Formula: see text] as gray images.


2006 ◽  
Vol 418 (2-3) ◽  
pp. 591-594 ◽  
Author(s):  
Yaokun Wu

Author(s):  
J. Prabu ◽  
J. Mahalakshmi ◽  
C. Durairajan ◽  
S. Santhakumar

In this paper, we have constructed some new codes from [Formula: see text]-Simplex code called unit [Formula: see text]-Simplex code. In particular, we find the parameters of these codes and have proved that it is a [Formula: see text] [Formula: see text]-linear code, where [Formula: see text] and [Formula: see text] is a smallest prime divisor of [Formula: see text]. When rank [Formula: see text] and [Formula: see text] is a prime power, we have given the weight distribution of unit [Formula: see text]-Simplex code. For the rank [Formula: see text] we obtain the partial weight distribution of unit [Formula: see text]-Simplex code when [Formula: see text] is a prime power. Further, we derive the weight distribution of unit [Formula: see text]-Simplex code for the rank [Formula: see text] [Formula: see text].


Author(s):  
Mijail Borges-Quintana ◽  
Miguel Ángel Borges-Trenard ◽  
Edgar Martínez-Moro ◽  
Gustavo Torres-Guerrero
Keyword(s):  

2002 ◽  
Vol 1 (1) ◽  
pp. 35
Author(s):  
S. GURITMAN

<p>An [n,k, dh-code is a ternary linear code with length n, dimension k and minimum distance d. We prove that codes with parameters [110,6, 72h, [109,6,71h, [237,6,157b, [69,7,43h, and [120,9,75h do not exist.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ram Krishna Verma ◽  
Om Prakash ◽  
Ashutosh Singh ◽  
Habibul Islam

<p style='text-indent:20px;'>For an odd prime <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula> and positive integers <inline-formula><tex-math id="M2">\begin{document}$ m $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \ell $\end{document}</tex-math></inline-formula>, let <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{F}_{p^m} $\end{document}</tex-math></inline-formula> be the finite field with <inline-formula><tex-math id="M5">\begin{document}$ p^{m} $\end{document}</tex-math></inline-formula> elements and <inline-formula><tex-math id="M6">\begin{document}$ R_{\ell,m} = \mathbb{F}_{p^m}[v_1,v_2,\dots,v_{\ell}]/\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\rangle_{1\leq i, j\leq \ell} $\end{document}</tex-math></inline-formula>. Thus <inline-formula><tex-math id="M7">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula> is a finite commutative non-chain ring of order <inline-formula><tex-math id="M8">\begin{document}$ p^{2^{\ell} m} $\end{document}</tex-math></inline-formula> with characteristic <inline-formula><tex-math id="M9">\begin{document}$ p $\end{document}</tex-math></inline-formula>. In this paper, we aim to construct quantum codes from skew constacyclic codes over <inline-formula><tex-math id="M10">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula>. First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.</p>


2020 ◽  
Vol 70 (6) ◽  
pp. 626-632
Author(s):  
Om Prakash ◽  
Shikha Yadav ◽  
Ram Krishna Verma

This article discusses linear complementary dual (LCD) codes over ℜ = Fq+uFq(u2=1) where q is a power of an odd prime p. Authors come up with a new Gray map from ℜn to F2nq and define a new class of codes obtained as the gray image of constacyclic codes over .ℜ Further, we extend the study over Euclidean and Hermitian LCD codes and establish a relation between reversible cyclic codes and Euclidean LCD cyclic codes over ℜ. Finally, an application of LCD codes in multisecret sharing scheme is given.


Sign in / Sign up

Export Citation Format

Share Document