Differences in Aluminum Mobilization in Spodosols in New Hampshire (USA) and in the Netherlands as a Result of Acid Deposition

Author(s):  
J. Mulder ◽  
N. van Breemen
1983 ◽  
pp. 129-141 ◽  
Author(s):  
J. Slanina ◽  
F. G. Römer ◽  
W. A. H. Asman

Geoderma ◽  
1995 ◽  
Vol 67 (1-2) ◽  
pp. 17-43 ◽  
Author(s):  
W. de Vries ◽  
J.J.M. van Grinsven ◽  
N. van Breemen ◽  
E.E.J.M. Leeters ◽  
P.C. Jansen

2006 ◽  
Vol 36 (10) ◽  
pp. 2544-2549 ◽  
Author(s):  
Gary J Hawley ◽  
Paul G Schaberg ◽  
Christopher Eagar ◽  
Catherine H Borer

Laboratory experiments have verified that acid-deposition-induced calcium (Ca) leaching reduces the foliar cold tolerance of red spruce (Picea rubens Sarg.) current-year foliage, increasing the risk of winter injury and crown deterioration. However, to date no studies have shown that ambient losses in soil Ca have resulted in increased winter injury in the field. In 2003, a year of severe region-wide winter injury to red spruce, we measured the nutrition and winter injury of current-year foliage and bud mortality for red spruce on two watersheds at the Hubbard Brook Experimental Forest in Thornton, New Hampshire: (1) a reference watershed that has undergone considerable Ca loss attributed to acid-deposition-induced leaching and (2) a watershed that was fertilized with CaSiO3 in 1999 to replace lost Ca. For all crown classes combined, winter injury was significantly greater (P = 0.05) for red spruce on the reference watershed than for spruce on the Ca-addition watershed. Differences in foliar injury were particularly evident for dominant and codominant trees. For these crown classes, red spruce on the reference watershed lost about 75% of their current-year foliage to winter injury, about three times more than foliar losses for the Ca-addition watershed (P = 0.01). Patterns of bud mortality followed that of foliar injury. The only difference in foliar cation nutrition detected was a significantly greater concentration of Ca in red spruce foliage from the Ca-addition watershed relative to spruce from the reference watershed (P = 0.001). Differences in Ca concentration, foliar winter injury, and bud mortality that occurred coincident with watershed Ca treatment provide the first evidence that ambient Ca depletion is associated with elevated winter injury of red spruce trees.


Author(s):  
Kyle T. Thornham ◽  
R. Jay Stipes ◽  
Randolph L. Grayson

Dogwood anthracnose, caused by Discula destructiva (1), is another new catastrophic tree disease that has ravaged natural populations of the flowering dogwood (Cornus florida) in the Appalachians over the past 15 years, and the epidemic is prognosticated to continue (2). An estimated 9.5 million acres have been affected, primarily in the Appalachian Mountains, from VA southwards, alone, and an estimated 50% of all dogwoods in PA have been killed. Since acid deposition has been linked experimentally with disease induction, and since the disease incidence and severity are more pronounced at higher elevations where lower pH precipitation events occur, we investigated the effect of acidic foliar sprays on moiphologic changes in the foliar cuticle and trichomes (3), the initial sites of infection and foci of Discula sporulation.


Author(s):  
James S. Webber

INTRODUCTION“Acid rain” and “acid deposition” are terms no longer confined to the lexicon of atmospheric scientists and 1imnologists. Public awareness of and concern over this phenomenon, particularly as it affects acid-sensitive regions of North America, have increased dramatically in the last five years. Temperate ecosystems are suffering from decreased pH caused by acid deposition. Human health may be directly affected by respirable sulfates and by the increased solubility of toxic trace metals in acidified waters. Even man's monuments are deteriorating as airborne acids etch metal and stone features.Sulfates account for about two thirds of airborne acids with wet and dry deposition contributing equally to acids reaching surface waters or ground. The industrial Midwest is widely assumed to be the source of most sulfates reaching the acid-sensitive Northeast since S02 emitted as a byproduct of coal combustion in the Midwest dwarfs S02 emitted from all sources in the Northeast.


Sign in / Sign up

Export Citation Format

Share Document