source regions
Recently Published Documents


TOTAL DOCUMENTS

1127
(FIVE YEARS 296)

H-INDEX

77
(FIVE YEARS 9)

2022 ◽  
Vol 26 (1) ◽  
pp. 117-127
Author(s):  
Tao Xu ◽  
Hongxi Pang ◽  
Zhaojun Zhan ◽  
Wangbin Zhang ◽  
Huiwen Guo ◽  
...  

Abstract. In the East Asian monsoon region, winter extreme precipitation events occasionally occur and bring great social and economic losses. From December 2018 to February 2019, southeastern China experienced a record-breaking number of extreme precipitation events. In this study, we analyzed the variation in water vapor isotopes and their controlling factors during the extreme precipitation events in Nanjing, southeastern China. The results show that the variations in water vapor isotopes are closely linked to the change in moisture sources. Using a water vapor d-excess-weighted trajectory model, we identified the following five most important moisture source regions: South China, the East China Sea, the South China Sea, the Bay of Bengal, and continental regions (northwestern China and Mongolia). Moreover, the variations in water vapor d excess during a precipitation event reflect rapid shifts in the moisture source regions. These results indicate that rapid shifts among multiple moisture sources are important conditions for sustaining wintertime extreme precipitation events over extended periods.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 108
Author(s):  
Jikang Wang ◽  
Bihui Zhang ◽  
Hengde Zhang ◽  
Cong Hua ◽  
Linchang An ◽  
...  

Northern China experienced a severe sand and dust storm (SDS) on 14/15 March 2021. It was difficult to simulate this severe SDS event accurately. This study compared the performances of three dust-emission schemes on simulating PM10 concentration during this SDS event by implementing three vertical dust flux parameterizations in the Comprehensive Air-Quality Model with Extensions (CAMx) model. Additionally, a statistical gusty-wind model was implemented in the dust-emission scheme, and it was used to quantify the gusty-wind contribution to dust emissions and peak PM10 concentration. As a result, the LS scheme (Lu and Shao 1999) produced the minimum errors for peak PM10 concentrations, the MB scheme (Marticorena and Bergametti 1995) underestimated the PM10 concentrations by 70–90%, and the KOK scheme (Kok et al. 2014) overestimated PM10 concentrations by 10–50% in most areas. The gusty-wind model could reasonably reproduce the probability density function of 2-min wind speeds. There were 5–40% more dust-emission flux and 5–40% more peak PM10 concentrations generated by the gusty wind than the hourly wind in the dust-source regions. The increase of peak PM10 concentration caused by gusty wind in the non-dust-source regions was higher than in the dust-source regions, with 10–50%. Implementing the gusty-wind model could help improve the LS scheme’s performance in simulating PM10 concentrations of this severe SDS event. More work is still needed to investigate the reliability of the gusty-wind model and LS scheme on various SDS events.


2022 ◽  
Vol 924 (1) ◽  
pp. 22
Author(s):  
Fan Guo ◽  
Lulu Zhao ◽  
Christina M. S. Cohen ◽  
Joe Giacalone ◽  
R. A. Leske ◽  
...  

Abstract We propose a model for interpreting highly variable ion composition ratios in solar energetic particle (SEP) events recently observed by the Parker Solar Probe (PSP) at 0.3–0.45 au. We use numerical simulations to calculate SEP propagation in a turbulent interplanetary magnetic field with a Kolmogorov power spectrum from large scales down to the gyration scale of energetic particles. We show that when the source regions of different species are offset by a distance comparable to the size of the source regions, the observed energetic particle composition He/H can be strongly variable over more than two orders of magnitude, even if the source ratio is at the nominal value. Assuming a 3He/4He source ratio of 10% in impulsive 3He-rich events and the same spatial offset of the source regions, the 3He/4He ratio at observation sites also vary considerably. The variability of the ion composition ratios depends on the radial distance, which can be tested by observations made at different radial locations. We discuss the implications of these results on the variability of ion composition of impulsive events and on further PSP and Solar Orbiter observations close to the Sun.


2021 ◽  
Author(s):  
Merritt Deeter ◽  
Gene Francis ◽  
John Gille ◽  
Debbie Mao ◽  
Sara Martínez-Alonso ◽  
...  

Abstract. Characteristics of the Version 9 (V9) MOPITT ("Measurements of Pollution in the Troposphere") satellite retrieval product for tropospheric carbon monoxide (CO) are described. The new V9 product includes many CO retrievals over land which, in previous MOPITT product versions, would have been discarded by the cloud detection algorithm. Globally, the number of daytime MOPITT retrievals over land has increased by 30–40 % relative to the Version 8 product, although the increase in retrieval coverage exhibits significant geographical variability. Areas benefiting from the improved cloud detection performance include (but are not limited to) source regions often characterized by high aerosol concentrations. The V9 MOPITT product also incorporates a modified calibration strategy for the MOPITT near-infrared (NIR) CO channels, resulting in greater temporal consistency for the NIR-only and thermal infrared-near infrared (TIR-NIR) retrieval variants. Validation results based on in-situ CO profiles acquired from aircraft in a variety of contexts indicate that retrieval biases for V9 are typically within the range of ±5 % and are generally comparable to results for the V8 product.


2021 ◽  
Author(s):  
Zhe Guo ◽  
Hanxian Fang ◽  
Farideh Honary

Abstract This paper introduces a new approach for the determination of the source region of BW (beat wave) modulation. This type of modulation is achieved by transmitting HF continuous waves with a frequency difference of f, where f is the frequency of modulated ELF/VLF (extremely low frequency/very low frequency) waves from two sub-arrays of a high power HF transmitter. Despite the advantages of BW modulation in terms of generating more stable ELF/VLF signal and high modulation efficiency, there exists a controversy on the physical mechanism of BW and its source region. In this paper, the two controversial theories, i.e. BW based on D-E region thermal nonlinearity and BW based on F region ponderomotive nonlinearity are examined for cases where each of these two theories exists exclusively or both of them exist simultaneously. According to the analysis and the simulation results presented in this paper, it is found that the generated VLF signal amplitude exhibits significant variation as a function of HF frequency in different source regions. Therefore, this characteristic can be utilised as a potential new approach to determine the physical mechanism and source location of BW.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1104
Author(s):  
Guo-Jun Qi ◽  
Jian Ma ◽  
Jing Wan ◽  
Yong-Lin Ren ◽  
Simon McKirdy ◽  
...  

Fall armyworm is recognized as one of most highly destructive global agricultural pests. In January 2020, it had first invaded Australia, posing a significant risk to its biosecurity, food security, and agricultural productivity. In this study, the migration paths and wind systems for the case of fall armyworm invading Australia were analyzed using a three-dimensional trajectory simulation approach, combined with its flight behavior and NCEP meteorological reanalysis data. The analysis showed that fall armyworm in Torres Strait most likely came from surrounding islands of central Indonesia on two occasions via wind migration. Specifically, fall armyworm moths detected on Saibai and Erub Islands might have arrived from southern Sulawesi Island, Indonesia, between January 15 and 16. The fall armyworm in Bamaga most likely arrived from the islands around Arafura Sea and Sulawesi Island of Indonesia, between January 26 and 27. The high risk period for the invasion of fall armyworm is only likely to have occurred in January–February due to monsoon winds, which were conducive to flight across the Timor Sea towards Australia. This case study is the first to confirm the immigration paths and timing of fall armyworm from Indonesia to Australia via its surrounding islands.


2021 ◽  
Author(s):  
Chaman Gul ◽  
Shichang Kang ◽  
Siva Praveen Puppala ◽  
Xiaokang Wu ◽  
Cenlin He ◽  
...  

Abstract. We collected surface snow samples from three different glaciers: Yala, Thana, and Sachin in the central and western Himalayas to understand the spatial variability and radiative impacts of light-absorbing particles. The Yala and Thana glaciers in Nepal and Bhutan, respectively, were selected to represent the central Himalayas. The Sachin glacier in Pakistan was selected to represent the western Himalayas. The samples were collected during the pre-and post-monsoon seasons of the year 2016. The samples were analysed for black carbon (BC) and water-insoluble organic carbon (OC) through the thermal optical method. The average mass concentrations (BC 2381.39 ng g−1; OC 3896.00 ng g−1; dust 101.05 µg g−1) in the western Himalaya (Sachin glacier) were quite higher compared to the mass concentrations (BC 357.93 ng g−1, OC 903.86 ng g−1, dust 21.95 µg g−1) at the central Himalaya (Yala glacier). The difference in mass concentration may be due to the difference in elevation, snow age, local pollution sources, and difference in meteorological conditions. BC in surface snow was also estimated through WRF-Chem simulations at the three glacier sites during the sampling periods. Simulations reasonably capture the spatial and seasonal patterns of the observed BC in snow but with a relatively smaller magnitude. Absolute snow albedo was estimated through the Snow, Ice, and Aerosol Radiation (SNICAR) model. The absolute snow albedo reduction was ranging between 0.48 % (Thana glacier during September) to 24 % (Sachin glacier during May) due to BC and 0.13 % (Yala glacier during September) to 5 % (Sachin glacier during May) due to dust. The instantaneous radiative forcing due to BC and dust was estimated in the range of 0 to 96.48 W m−2 and 0 to 25 W m−2 respectively. The lowest and highest albedo reduction and radiative forcing were observed in central and western Himalayan glaciers, respectively. The potential source regions of the deposited pollutants were inferred using WRF-Chem tagged-tracer simulations. Selected glaciers in the western Himalayas were mostly affected by long-range transport from the Middle East and Central Asia; however, the central Himalayan glaciers were mainly affected by local and South Asia emissions (from Nepal, India, and China) especially during the pre-monsoon season. Overall, South Asia and West Asia were the main contributing source regions of pollutants.


Sign in / Sign up

Export Citation Format

Share Document