ca depletion
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 254
Author(s):  
Steven P. Hollis ◽  
Sabri Foury ◽  
Stefano Caruso ◽  
Sean Johnson ◽  
Vitor Barrote ◽  
...  

With new advances in rapid-acquisition geochemical and hyperspectral techniques, exploration companies are now able to detect subtle halos surrounding orebodies at minimal expense. The Nimbus Ag-Zn-(Au) deposit is unique in the Archean Yilgarn Craton of Western Australia. Due to its mineralogy, alteration assemblages, geochemical affinity, and tectonic setting, it is interpreted to represent a shallow water (~650 mbsl) and low-temperature (<250 °C) volcanogenic massive sulfide (VMS) deposit with epithermal characteristics (i.e., a hybrid bimodal felsic deposit). We present a detailed paragenetic account of the Nimbus deposit, and establish lithogeochemical and hyperspectral halos to mineralization to aid exploration. Mineralization at Nimbus is characterized by early units of barren massive pyrite that replace glassy dacitic lavas, and underlying zones of polymetallic sulfides that replace autoclastic monomict dacite breccias. The latter are dominated by pyrite-sphalerite-galena, a diverse suite of Ag-Sb ± Pb ± As ± (Cu)-bearing sulfosalts, minor pyrrhotite, arsenopyrite, and rare chalcopyrite. The main sulfosalt suite is characterized by pyrargyrite, and Ag-rich varieties of boulangerite, tetrahedrite, and bournonite. Zones of sulfide mineralization in quartz-sericite(±carbonate)-altered dacite are marked by significant mass gains in Fe, S, Zn, Pb, Sb, Ag, As, Cd, Ni, Cu, Ba, Co, Cr, Tl, Bi, and Au. Basaltic rocks show reduced mass gains in most elements, with zones of intense quartz-chlorite-carbonate±fuchsite alteration restricted to thick sequences of hyaloclastite, and near contacts with dacitic rocks. Broad zones of intense silica-sericite alteration surround mineralization in dacite, and are marked by high Alteration Index and Chlorite-Carbonate-Pyrite Index (CCPI) values, strong Na-Ca depletion, and an absence of feldspar (albite) in thermal infrared (TIR) data. White mica compositions are predominantly muscovitic in weakly altered sections of the dacitic footwall sequence. More paragonitic compositions are associated with zones of increased sericitization and high-grade polymetallic sulfide mineralization. Chlorite in dacitic rocks often occurs adjacent to zones of sulfide mineralization and is restricted to narrow intervals. Carbonate abundance is sporadic in dacite, but is most abundant outside the main zones of Na-Ca depletion. Basaltic rocks are characterized by strongly paragonitic white mica compositions, and abundant chlorite and carbonate. Shifts from Ca carbonates and Fe-rich chlorites to more Mg-rich compositions of both minerals occur in more intensely hydrothermally altered basaltic hyaloclastite, and near contacts with dacitic rocks. Hanging-wall polymict conglomerates are characterized by minor amounts of muscovitic to phengitic white mica (2205–2220 nm), and an absence of chlorite and carbonate alteration.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1645 ◽  
Author(s):  
Simon Jansen ◽  
Mara Bues ◽  
Ulrich Baulain ◽  
Christin Habig ◽  
Ingrid Halle ◽  
...  

In modern laying hybrids, calcium (Ca) homeostasis is immensely challenged by daily eggshell calcification. However, excessive mobilization of Ca from bones may lead to osteoporosis, which then manifests in a high incidence of poor bone quality. The aim of this study was to characterize the hens’ adaptation response to an alternating dietary Ca restriction. The animal model consisted of four purebred layer lines, differing in laying performance (high vs. moderately performing lines) and phylogenetic origin (white- vs. brown-egg lines). According to the resource allocation theory, hens selected for high egg production were assumed to show a different response pattern to cope with this nutritive challenge compared to moderately performing lines. Data collected included egg number, egg quality traits, body weight and bone characteristics. The Ca depletion led to a temporary drop in egg production and shell quality and a loss of bone stability due to Ca mobilization. The white-egg lines response was more pronounced, whereas the brown-egg lines were less sensitive towards reduced Ca supply. Our study shows that the hens’ responsiveness to coping with a nutritive Ca depletion is not ultimately linked to genetic selection for increased egg production but rather to phylogenetic origin.


2019 ◽  
Vol 623 ◽  
pp. A151
Author(s):  
V. Pérez-Mesa ◽  
O. Zamora ◽  
D. A. García-Hernández ◽  
Y. Osorio ◽  
T. Masseron ◽  
...  

Context. We previously explored the circumstellar effects on Rb and Zr abundances in a sample (21) of massive Galactic O-rich asymptotic giant branch (AGB) stars. Here we are interested in clarifying the role of the extended atmosphere in the case of Li and Ca. Li is an important indicator of hot bottom burning while the total Ca abundances in these stars could be affected by neutron captures. Aims. We report new Li and Ca abundances in a larger sample (30) of massive Galactic O-rich AGB stars by using more-realistic extended model atmospheres. Li abundances had previously studied with hydrostatic models, while the Ca abundances have been determined here for the first time. Methods. We used a modified version of the spectral synthesis code Turbospectrum and consider the presence of a gaseous circumstellar envelope and radial wind in the modelling of the spectra of these massive AGB stars. The Li and Ca abundances were obtained from the 6708 Å Li I and 6463 Å Ca I resonance lines, respectively. In addition, we studied the sensitivity of the pseudo-dynamical models to variations of the stellar and wind parameters. Results. The Li abundances derived with the pseudo-dynamical models are very similar to those obtained from hydrostatic models (the average difference is 0.18 dex, σ2 = 0.02), with no difference for Ca. This indicates that the Li and Ca content in these stars is only slightly affected by the presence of a circumstellar envelope. We also found that the Li I and Ca I line profiles are not very sensitive to variations of the model wind parameters. Conclusions. The new Li abundances confirm the Li-rich (and super Li-rich, in some cases) nature of the sample stars, supporting the activation of hot bottom burning in massive Galactic AGB stars. This is in good agreement with the theoretical predictions for solar metallicity AGB models from ATON, Monash, and NuGrid/MESA but is at odds with the FRUITY database, which predicts no hot bottom burning leading to the production of Li. Most (20) sample stars display nearly solar (within the estimated errors and considering possible non-local thermodynamic equilibrium effects) Ca abundances that are consistent with the available s-process nucleosynthesis models for solar metallicity massive AGB stars, which predict overproduction of 46Ca relatively to the other Ca isotope and the creation of the radioactive isotope 41Ca (half life of 0.1 Myr) but no change in the total Ca abundance. A minority (five) of the sample stars seem to show a significant Ca depletion (by up to 1.0 dex). Possible explanations are offered to explain their apparent and unexpected Ca depletion.


2018 ◽  
Vol 14 (S343) ◽  
pp. 489-490
Author(s):  
V. Pérez-Mesa ◽  
O. Zamora ◽  
D. A. García-Hernández ◽  
Y. Ossorio ◽  
T. Masseron ◽  
...  

AbstractWe explore the circumstellar effects on the Li and Ca abundances determination in a complete sample of massive Galactic AGB stars. The Li abundance is an indicator of the hot bottom burning (HBB) activation, while the total Ca abundance could be affected by overproduction of the short-lived radionuclide 41Ca by the s-process. Li abundances were previously studied with hydrostatic models, while Ca abundances are determined here for the first time. The pseudo-dynamical abundances of Li and Ca are very similar to the hydrostatic ones, indicating that circumstellar effects are almost negligible. The new Li abundances confirm the (super-)Li-rich character of the sample Li-detected stars, supporting the HBB activation in massive Galactic AGB stars. Most sample stars display nearly solar Ca abundances that are consistent with predictions from the s-process nucleosynthesis models. A minority of the sample stars show a significant Ca depletion. Possible reasons for their (unexpected) low Ca content are given.


2016 ◽  
Vol 73 (3) ◽  
pp. 382-393 ◽  
Author(s):  
Carolyn R. Reid ◽  
Shaun A. Watmough

The issue of calcium (Ca) decline in surface waters of eastern Canada is an emerging concern that may be made worse by timber harvesting. In the Muskoka River Watershed (MRW) in Ontario, the mean lake Ca concentration in 104 lakes decreased by 30% since the 1980s, with the rate of decrease slowing over time consistent with changes in lake sulfate (SO4) as the region recovers from acid deposition. Recent data suggested that smaller lakes, at higher elevation, in smaller catchments with higher runoff that are minimally impacted by the influence of roads and agriculture are associated with lower Ca concentrations and thus are the lakes most at risk of amplified Ca depletion. Using proposed annual allowable harvest cuts from 10-year forest management plans, 38% of 364 lakes assessed in the MRW will fall below a reported critical 1 mg·L–1 Ca threshold compared with just 8% in the absence of future harvesting. It is concluded that Ca decline poses a serious threat to aquatic ecosystems and should be taken into consideration in future forest management plans.


2013 ◽  
Vol 293 ◽  
pp. 65-78 ◽  
Author(s):  
Gregory van der Heijden ◽  
Arnaud Legout ◽  
Benoît Pollier ◽  
Louis Mareschal ◽  
Marie-Pierre Turpault ◽  
...  

2010 ◽  
Vol 98 (3) ◽  
pp. 295a ◽  
Author(s):  
Monika Sztretye ◽  
Leandro Royer ◽  
Carlo Manno ◽  
Jingsong Zhou ◽  
Björn Knollmann ◽  
...  
Keyword(s):  

2006 ◽  
Vol 36 (10) ◽  
pp. 2544-2549 ◽  
Author(s):  
Gary J Hawley ◽  
Paul G Schaberg ◽  
Christopher Eagar ◽  
Catherine H Borer

Laboratory experiments have verified that acid-deposition-induced calcium (Ca) leaching reduces the foliar cold tolerance of red spruce (Picea rubens Sarg.) current-year foliage, increasing the risk of winter injury and crown deterioration. However, to date no studies have shown that ambient losses in soil Ca have resulted in increased winter injury in the field. In 2003, a year of severe region-wide winter injury to red spruce, we measured the nutrition and winter injury of current-year foliage and bud mortality for red spruce on two watersheds at the Hubbard Brook Experimental Forest in Thornton, New Hampshire: (1) a reference watershed that has undergone considerable Ca loss attributed to acid-deposition-induced leaching and (2) a watershed that was fertilized with CaSiO3 in 1999 to replace lost Ca. For all crown classes combined, winter injury was significantly greater (P = 0.05) for red spruce on the reference watershed than for spruce on the Ca-addition watershed. Differences in foliar injury were particularly evident for dominant and codominant trees. For these crown classes, red spruce on the reference watershed lost about 75% of their current-year foliage to winter injury, about three times more than foliar losses for the Ca-addition watershed (P = 0.01). Patterns of bud mortality followed that of foliar injury. The only difference in foliar cation nutrition detected was a significantly greater concentration of Ca in red spruce foliage from the Ca-addition watershed relative to spruce from the reference watershed (P = 0.001). Differences in Ca concentration, foliar winter injury, and bud mortality that occurred coincident with watershed Ca treatment provide the first evidence that ambient Ca depletion is associated with elevated winter injury of red spruce trees.


2005 ◽  
Vol 35 (5) ◽  
pp. 1109-1121 ◽  
Author(s):  
T G Huntington

Forest harvesting and acidic deposition can cause substantial decreases in the calcium (Ca) inventory of forest soils if such losses are not replenished through mineral weathering, atmospheric deposition, or fertilization. The net balance between losses and gains defines the forest Ca status. Site-specific studies have measured Ca pools and fluxes in Maine forests, but no synthesis has been published. In this paper, I review the literature on forest Ca and assess the current status and potential future trends. Forest soils in Maine are currently at lesser risk of Ca depletion compared with many forest soils in the central and southeastern United States, because levels of acidic deposition and rates of Ca accumulation in trees are lower in Maine. The rate of Ca accumulation in trees is reduced in Maine as a result of lower growth rates and a higher proportion of conifer trees that require less Ca than hardwoods. However, field-scale biogeochemical studies in Maine and New Hampshire, and regional estimates of harvest removals and soil inventories coupled with low weathering estimates, indicate that Ca depletion is a realistic concern in Maine. The synthesis of site-specific and regional data for Maine in conjunction with the depletion measured directly in surrounding areas indicates that the Ca status of many forest soils in Maine is likely declining. Ca status could decrease further in the future if forest growth rates increase in response to climate trends and recovery from insect-induced mortality and excessive harvesting in recent years. Proposed climate change induced reductions in spruce and fir and increases in hardwoods would also increase the risk of Ca depletion.


Sign in / Sign up

Export Citation Format

Share Document