precipitation events
Recently Published Documents


TOTAL DOCUMENTS

1395
(FIVE YEARS 601)

H-INDEX

64
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Geraldine Tierney

This assessment synthesizes information about current and projected climate and related impacts at Martin Van Buren National Historic Park (MAVA) in order to help park stewards understand, plan, and manage for climate change. Working with a group of park managers, scientists, and local stake-holders, six key park resources were identified for assessment herein: Climate, Water quantity, Phenology, Agriculture, Trees, and Cultural resources. Where data was available, this analysis assessed current condition and considered mid-century (2030–2060) and end-of-century (2100) impacts based on a range of projected future climate conditions, including reduced, low, high and highest emission pathways. Climate change stressors identified for MAVA include: Increased temperature, increased hot days, increased precipitation, increased extreme precipitation events, increased flooding and erosion, shifting ranges of both native species and pest, pathogen and weed species, and phenological shifts and mismatches.


2022 ◽  
Author(s):  
Lena Katharina Schmidt ◽  
Till Francke ◽  
Erwin Rottler ◽  
Theresa Blume ◽  
Johannes Schöber ◽  
...  

Abstract. Climatic changes are expected to fundamentally alter discharge and sediment dynamics in glaciated high alpine areas, e.g. through glacier retreat, prolonged snow-free periods and more frequent intense rainfall events in summer. However, how exactly these hydrological changes will affect sediment dynamics is not yet known. In the present study, we aim to pinpoint areas and processes most relevant to recent sediment and discharge dynamics on different spatial and temporal scales in the Ötztal Alpine Region in Tyrol, Austria. Therefore, we analyze observed discharge and relatively long suspended sediment time series of up to 15 years from three gauges in a nested catchment setup. The catchments range from 100 to almost 800 km2 in size with 10 to 30 % glacier cover and span an elevation range of 930 to 3772 m a.s.l.. The investigation of satellite-based snow cover maps, glacier inventories, mass balances and precipitation data complement the analysis. Our results indicate that mean annual specific discharge and suspended sediment fluxes are highest in the most glaciated sub-catchment and both fluxes correlate significantly with annual glacier mass balances. Furthermore, both discharge and suspended sediment loads show a distinct seasonality with low values during winter and high values during summer. However, the spring onset of sediment transport is almost synchronous at the three gauges, contrary to the spring rise in discharge, which occurs earlier further downstream. A spatio-temporal analysis of snow cover evolution indicates that the spring increase in sediment fluxes at all gauges coincides with the onset of snow melt above 2500 m elevation. Zones above this elevation include glacier tongues and recently deglaciated areas, which seem to be crucial for the sediment dynamics in the catchment. Precipitation events in summer were associated with peak sediment concentrations and fluxes, but on average accounted for only 21 % of the annual sediment yields of the years 2011 to 2020. We conclude that glaciers and the areas above 2500 m elevation play a dominant role for discharge and sediment dynamics in the Ötztal area, while precipitation events play a secondary role. Our study extends the scientific knowledge on current hydro-sedimentological changes in glaciated high alpine areas and provides a baseline for investigations on projected future changes in hydro-sedimentological system dynamics.


2022 ◽  
Vol 26 (1) ◽  
pp. 117-127
Author(s):  
Tao Xu ◽  
Hongxi Pang ◽  
Zhaojun Zhan ◽  
Wangbin Zhang ◽  
Huiwen Guo ◽  
...  

Abstract. In the East Asian monsoon region, winter extreme precipitation events occasionally occur and bring great social and economic losses. From December 2018 to February 2019, southeastern China experienced a record-breaking number of extreme precipitation events. In this study, we analyzed the variation in water vapor isotopes and their controlling factors during the extreme precipitation events in Nanjing, southeastern China. The results show that the variations in water vapor isotopes are closely linked to the change in moisture sources. Using a water vapor d-excess-weighted trajectory model, we identified the following five most important moisture source regions: South China, the East China Sea, the South China Sea, the Bay of Bengal, and continental regions (northwestern China and Mongolia). Moreover, the variations in water vapor d excess during a precipitation event reflect rapid shifts in the moisture source regions. These results indicate that rapid shifts among multiple moisture sources are important conditions for sustaining wintertime extreme precipitation events over extended periods.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Guido Paliaga ◽  
Antonio Parodi

The Mediterranean region is regarded as the meeting point between Europe, Africa and the Middle East. Due to favourable climatic conditions, many civilizations have flourished here. Approximately, about half a billion people live in the Mediterranean region, which provides a key passage for trading between Europe and Asia. Belonging to the middle latitude zone, this region experiences high meteorological variability that is mostly induced by contrasting hot and cold air masses that generally come from the west. Due to such phenomenon, this region is subject to frequent intensive precipitation events. Besides, in this complex physiographic and orographic region, human activities have contributed to enhance the geo-hydrologic risk. Further, in terms of climate change, the Mediterranean is a hot spot, probably exposing it to future damaging events. In this framework, this research focuses on the analysis of precipitation related events recorded in the EM–DAT disasters database for the period 1979–2018. An increasing trend emerges in both event records and related deaths. Then a possible linkage with two meteorological variables was investigated. Significant trends were studied for CAPE (Convective Available Potential Energy) and TCWV (Total Column Water Vapor) data, as monthly means in 100 km2 cells for 18 major cities facing the Mediterranean Sea. The Mann–Kendall trend test, Sen’s slope estimation and the Hurst exponent estimation for the investigation of persistency in time series were applied. The research provides new evidence and quantification for the increasing trend of climate related disasters at the Mediterranean scale: recorded events in 1999–2018 are about four times the ones in 1979–1998. Besides, it relates this rise with the trend of two meteorological variables associated with high intensity precipitation events, which shows a statistically significative increasing trend in many of the analysed cities facing the Mediterranean Sea.


2022 ◽  
Vol 75 (3) ◽  
pp. 128-134
Author(s):  
Robert Blundell ◽  
Akif Eskalen

Grapevine trunk diseases (GTDs) are currently considered some of the most important challenges for viticulture, curtailing vineyard longevity and productivity in nearly every raisin, table and wine grape production region in California and worldwide. Pruning wounds provide the main entry point for fungal pathogens responsible for these diseases; pathogens enter the wounds following precipitation events. The aim of this study was to evaluate the efficacy of selected chemical and experimental biological fungicides for protection of pruning wounds against two of the most common and virulent fungal pathogens causing GTDs: Eutypa lata and Neofusicoccum parvum. This study was conducted on sauvignon blanc at the UC Davis Department of Plant Pathology Field Station. Results showed that several chemical and biological fungicides, notably the chemical fungicide Luna Sensation, the biofungicide Vintec and a combination of the biofungicides Bio-Tam and CrabLife Powder, provided significant protection against at least one of the two canker pathogens used in this study. However, the majority of products tested did not provide simultaneous control of both E. lata and N. parvum pathogens, highlighting the continuing challenge of controlling GTDs.


Author(s):  
Kyle T. Aune ◽  
Meghan F. Davis ◽  
Genee S. Smith

Extreme precipitation events (EPE) change the natural and built environments and alter human behavior in ways that facilitate infectious disease transmission. EPEs are expected with high confidence to increase in frequency and are thus of great public health importance. This scoping review seeks to summarize the mechanisms and severity of impacts of EPEs on infectious diseases, to provide a conceptual framework for the influence of EPEs on infectious respiratory diseases, and to define areas of future study currently lacking in this field. The effects of EPEs are well-studied with respect to enteric, vector-borne, and allergic illness where they are shown to moderately increase risk of illness, but not well-understood in relation to infectious respiratory illness. We propose a framework for a similar influence of EPEs on infectious respiratory viruses through several plausible pathways: decreased UV radiation, increased ambient relative humidity, and changes to human behavior (increased time indoors and use of heating and cooling systems). However, limited work has evaluated meteorologic risk factors for infectious respiratory diseases. Future research is needed to evaluate the effects of EPEs on infectious respiratory diseases using individual-level case surveillance, fine spatial scales, and lag periods suited to the incubation periods of the disease under study, as well as a full characterization of susceptible, vulnerable, and sensitive population characteristics.


2021 ◽  
Vol 18 (24) ◽  
pp. 6579-6588
Author(s):  
Alexander J. Turner ◽  
Philipp Köhler ◽  
Troy S. Magney ◽  
Christian Frankenberg ◽  
Inez Fung ◽  
...  

Abstract. Solar-induced chlorophyll fluorescence (SIF) has previously been shown to strongly correlate with gross primary productivity (GPP); however this relationship has not yet been quantified for the recently launched TROPOspheric Monitoring Instrument (TROPOMI). Here we use a Gaussian mixture model to develop a parsimonious relationship between SIF from TROPOMI and GPP from flux towers across the conterminous United States (CONUS). The mixture model indicates the SIF–GPP relationship can be characterized by a linear model with two terms. We then estimate GPP across CONUS at 500 m spatial resolution over a 16 d moving window. We observe four extreme precipitation events that induce regional GPP anomalies: drought in western Texas, flooding in the midwestern US, drought in South Dakota, and drought in California. Taken together, these events account for 28 % of the year-to-year GPP differences across CONUS. Despite these large regional anomalies, we find that CONUS GPP varies by less than 4 % between 2018 and 2019.


2021 ◽  
Author(s):  
Alexandre Tuel ◽  
Bettina Schaefli ◽  
Jakob Zscheischler ◽  
Olivia Martius

Abstract. River discharge is impacted by the sub-seasonal (weekly to monthly) temporal structure of precipitation. One example is the successive occurrence of extreme precipitation events over sub-seasonal timescales, referred to as temporal clustering. Its potential effects on discharge have received little attention. Here, we address this question by analysing discharge observations following extreme precipitation events either clustered in time or occurring in isolation. We rely on two sets of precipitation and discharge data, one centered on Switzerland and the other over Europe. We identify "clustered" extreme precipitation events based on the previous occurrence of another extreme precipitation within a given time window. We find that clustered events are generally followed by a more prolonged discharge response with a larger amplitude. The probability of exceeding the 95th discharge percentile in the five days following an extreme precipitation event is in particular up to twice as high for situations where another extreme precipitation event occurred in the preceding week compared to isolated extreme precipitation events. The influence of temporal clustering decreases as the clustering window increases; beyond 6–8 weeks the difference with non-clustered events is negligible. Catchment area, streamflow regime and precipitation magnitude also modulate the response. The impact of clustering is generally smaller in snow-dominated and large catchments. Additionally, particularly persistent periods of high discharge tend to occur in conjunction with temporal clusters of precipitation extremes.


2021 ◽  
Author(s):  
Judith Meyer ◽  
Malte Neuper ◽  
Luca Mathias ◽  
Erwin Zehe ◽  
Laurent Pfister

Abstract. In recent years, flash floods repeatedly occurred in temperate regions of central western Europe. Unlike in Mediterranean catchments, this flooding behaviour is unusual. In the past, and especially in the 1990s, floods were characterized by predictable, slowly rising water levels during winter and driven by westerly atmospheric fluxes (Pfister et al., 2004). The intention of this study is to link the recent occurrence of flash floods in central western Europe to extreme precipitation and specific atmospheric conditions to identify the cause for this apparent shift. Therefore, we hypothesise that an increase in extreme precipitation events has subsequently led to an increase in the occurrence of flash flood events in central western Europe and all that being caused by a change in the occurrence of flash flood favouring atmospheric conditions. To test this hypothesis, we compiled data on flash floods in central western Europe and selected precipitation events above 40 mm h−1 from radar data (RADOLAN, DWD). Moreover, we identified proxy parameters representative for flash flood favouring atmospheric conditions from the ERA5 reanalysis dataset. High specific humidity in the lower troposphere (q ≥ 0.004 kg kg−1), sufficient latent instability (CAPE ≥ 100 J kg−1) and weak deep-layer wind shear (DLS ≤ 10 m s−1) proved to be characteristic for long-lasting intense rainfall that can potentially trigger flash floods. These atmospheric parameters, as well as the flash flood and precipitation events were then analysed using linear models. Thereby we found significant increases in atmospheric moisture contents and increases in atmospheric instability. Parameters representing the motion and organisation of convective systems occurred slightly more often or remained unchanged in the time period from 1981–2020. Moreover, a trend in the occurrence of flash floods was confirmed. The number of precipitation events, their maximum 5-minute intensities as well as their hourly sums were however characterized by large inter-annual variations and no trends could be identified between 2002–2020. This study therefore shows that the link from atmospheric conditions via precipitation to flash floods cannot be traced down in an isolated way. The complexity of interactions is likely higher and future analyses should include other potentially relevant factors such as intra-annual precipitation patterns or catchment specific parameters.


Sign in / Sign up

Export Citation Format

Share Document