Drug Entry Into the Brain and Its Pharmacologic Manipulation

Author(s):  
N. H. Greig
Keyword(s):  
F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 384
Author(s):  
Samuel J. Toll ◽  
Fiona Qiu ◽  
Yifan Huang ◽  
Mark D. Habgood ◽  
Katarzyna M. Dziegielewska ◽  
...  

Background: Women with epilepsy face difficult choices whether to continue antiepileptic drug treatment during pregnancy, as uncontrolled seizures carry great risk to mother and fetus but continuing treatment may have adverse effects on baby’s development. This study aimed at evaluating antiepileptic drug entry into developing brain. Methods: Anaesthetised pregnant, non-pregnant adult females, postnatal and fetal rats were injected intraperitoneally with different doses, single or in combinations, of valproate and lamotrigine, all within clinical range. Injectate included 3H-labelled drug. After 30min, CSF, blood and brain samples were obtained; radioactivity was measured using liquid scintillation counting. Some animals were also exposed to valproate in feed throughout pregnancy and into neonatal period. Drug levels were measured by liquid chromatography coupled to mass spectrometry (LC-MS). Results are given as CSF or tissue/plasma% as index of drug entry. Results: Entry of valproate into brain and CSF was higher at E19 and P4 compared to adult but was not dose-dependent;  placental transfer increased significantly at highest dose of 100mg/Kg. Lamotrigine entry into the brain was dose dependent only at E19. Chronic valproate treatment, or combination of valproate and lamotrigine had little effect on either drug entry, except for reduced valproate brain entry in adult brain with chronic treatment. Placental transfer decreased significantly after chronic valproate treatment. LC-MS measurement of valproate in adults confirmed that rat plasma values were within the clinical range and CSF/plasma and brain/plasma ratios for LC-MS and 3H-valproate were similar. Conclusion: Results suggest that entry of valproate may be higher in developing brain, the capacity of barrier mechanism is mostly unaffected by doses within the clinical range, with or without addition of lamotrigine. Chronic valproate exposure may result in upregulation in cellular mechanisms restricting its entry into the brain. Entry of lamotrigine was little different at different ages and was not dose dependent.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 384
Author(s):  
Samuel J. Toll ◽  
Fiona Qiu ◽  
Yifan Huang ◽  
Mark D. Habgood ◽  
Katarzyna M. Dziegielewska ◽  
...  

Background: Women with epilepsy face difficult choices whether to continue antiepileptic drug treatment during pregnancy, as uncontrolled seizures carry great risk to mother and fetus but continuing treatment may have adverse effects on baby’s development. This study aimed at evaluating antiepileptic drug entry into developing brain. Methods: Anaesthetised pregnant, non-pregnant adult females, postnatal and fetal rats were injected intraperitoneally with different doses, single or in combinations, of valproate and lamotrigine, within clinical range. Injectate included 3H-labelled drug. After 30min, CSF, blood and brain samples were obtained; radioactivity measured using liquid scintillation counting. Some animals were also exposed to valproate in feed throughout pregnancy and into neonatal period. Drug levels measured by liquid chromatography coupled to mass spectrometry (LC-MS). Results given as CSF or tissue/plasma% as index of drug entry. Results: Entry of valproate into brain and CSF was higher at E19 and P4 compared to adult and was dose-dependent except at E19; placental transfer increased significantly at highest dose of 100mg/kg. Lamotrigine entry into the brain was dose dependent only at E19. Chronic valproate treatment, or combination of valproate and lamotrigine had little effect on either drug entry, except for reduced valproate brain entry in adult brain with chronic treatment. Placental transfer decreased significantly after chronic valproate treatment. LC-MS measurement of valproate in adults confirmed that rat plasma values were within the clinical range and CSF/plasma and brain/plasma ratios for LC-MS and 3H-valproate were similar. Conclusion: Results suggest that entry of valproate may be higher in developing brain, the capacity of barrier mechanism is mostly unaffected by doses within the clinical range, with or without addition of lamotrigine. Chronic valproate exposure may result in upregulation in cellular mechanisms restricting its entry into the brain. Entry of lamotrigine was little different at different ages and was not dose dependent.


1979 ◽  
Vol 172 (2) ◽  
pp. 354-359 ◽  
Author(s):  
S.I. Rapoport ◽  
K. Ohno ◽  
K.D. Pettigrew
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document