The Molecular Biology of Fruit Ripening

1994 ◽  
pp. 287-299 ◽  
Author(s):  
Steve Picton ◽  
Julie E. Gray ◽  
Don Grierson
1993 ◽  
pp. 325-334 ◽  
Author(s):  
David R. Dilley ◽  
Ian D. Wilson ◽  
J. Kuai ◽  
L. Poneleit ◽  
Y. Zhu ◽  
...  

1992 ◽  
Vol 19 (1) ◽  
pp. 69-87 ◽  
Author(s):  
Julie Gray ◽  
Steve Picton ◽  
Junaid Shabbeer ◽  
Wolfgang Schuch ◽  
Don Grierson

Author(s):  
Julie Gray ◽  
Steve Picton ◽  
Junaid Shabbeer ◽  
Wolfgang Schuch ◽  
Don Grierson

HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 191d-191
Author(s):  
David A. Starrett ◽  
Kenneth C. Gross

Antisense technology has shown that neither polygalacturonase nor pectin methylesterase alone are responsible for tomato fruit softening, leading to the likelihood that other enzymes or factors are important. Our laboratory recently found that α and β-galactosidase from avocado fruit solubilized tomato fruit pectin in vitro. Previously, Pressey (Plant Physiol. 1983,71:132) found that the activity of one of three α-galactosidase isozymes from tomato fruit increased during ripening and was capable of degrading cell wall galactan, suggesting a role for the enzyme in fruit softening. Increased β-galactosidase activity was observed in a number of other fruit during ripening. In the present study, NaCl extraction of tomato pericarp yielded relatively high levels of cc- and β-galactosidase activity. At least two isozymes of each were resolved during Mono-Q HPLC α-Galactosidase was further purified by additional Mono Q and Superose 12 gel filtration HPLC. Gel filtration and SDS-PAGE yielded an apparent molecular weight of 44 kD. The partially pure α-galactosidase had a specific activity of 294 μmol product/min per mg protein, a Km of 317 μm, a pl of 5.0, and a pH optimum of 5.5. Activity was inhibited 67% by α-d-galactose. Preliminary results show that β-galactosidase can also be purified by the same techniques. Following further purification, the isozymes will be sequenced and cloned. A second approach being used in an attempt to identify cDNA clones for the α- and β-galactosidase genes from tomato fruit involves using heterologous cDNA clones from guar (Overbeeke et al., 1989; Plant Molecular Biology 13:541-550) and carnation (Raghothama et al., 1991; Plant Molecular Biology 17:61-71), respectively, to screen a ripening tomato fruit cDNA library. Basic molecularbiological techniques will be used to elucidate the role of these enzymes in tomato fruit ripening.


Author(s):  
Cecil E. Hall

The visualization of organic macromolecules such as proteins, nucleic acids, viruses and virus components has reached its high degree of effectiveness owing to refinements and reliability of instruments and to the invention of methods for enhancing the structure of these materials within the electron image. The latter techniques have been most important because what can be seen depends upon the molecular and atomic character of the object as modified which is rarely evident in the pristine material. Structure may thus be displayed by the arts of positive and negative staining, shadow casting, replication and other techniques. Enhancement of contrast, which delineates bounds of isolated macromolecules has been effected progressively over the years as illustrated in Figs. 1, 2, 3 and 4 by these methods. We now look to the future wondering what other visions are waiting to be seen. The instrument designers will need to exact from the arts of fabrication the performance that theory has prescribed as well as methods for phase and interference contrast with explorations of the potentialities of very high and very low voltages. Chemistry must play an increasingly important part in future progress by providing specific stain molecules of high visibility, substrates of vanishing “noise” level and means for preservation of molecular structures that usually exist in a solvated condition.


2020 ◽  
Vol 64 (6) ◽  
pp. 863-866
Author(s):  
Zhe Wu

Abstract The year 2019 marked the fortieth anniversary of the Chinese Society of Biochemistry and Molecular Biology (CSBMB), whose mission is to promote biomolecular research and education in China. The last 40 years have witnessed tremendous growth and achievements in biomolecular research by Chinese scientists and Essays in Biochemistry is delighted to publish this themed issue that focuses on exciting areas within RNA biology, with each review contributed by key experts from China.


Sign in / Sign up

Export Citation Format

Share Document