rna biology
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 92)

H-INDEX

22
(FIVE YEARS 6)

2022 ◽  
Vol 8 ◽  
Author(s):  
Agnieszka Ruszkowska ◽  
Ya Ying Zheng ◽  
Song Mao ◽  
Milosz Ruszkowski ◽  
Jia Sheng

G•U wobble base pair frequently occurs in RNA structures. The unique chemical, thermodynamic, and structural properties of the G•U pair are widely exploited in RNA biology. In several RNA molecules, the G•U pair plays key roles in folding, ribozyme catalysis, and interactions with proteins. G•U may occur as a single pair or in tandem motifs with different geometries, electrostatics, and thermodynamics, further extending its biological functions. The metal binding affinity, which is essential for RNA folding, catalysis, and other interactions, differs with respect to the tandem motif type due to the different electrostatic potentials of the major grooves. In this work, we present the crystal structure of an RNA 8-mer duplex r[UCGUGCGA]2, providing detailed structural insights into the tandem motif I (5′UG/3′GU) complexed with Ba2+ cation. We compare the electrostatic potential of the presented motif I major groove with previously published structures of tandem motifs I, II (5′GU/3′UG), and III (5′GG/3′UU). A local patch of a strongly negative electrostatic potential in the major groove of the presented structure forms the metal binding site with the contributions of three oxygen atoms from the tandem. These results give us a better understanding of the G•U tandem motif I as a divalent metal binder, a feature essential for RNA functions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dhaval Varshney ◽  
Sergio Martinez Cuesta ◽  
Barbara Herdy ◽  
Ummi Binti Abdullah ◽  
David Tannahill ◽  
...  

AbstractFour-stranded G-quadruplex (G4) structures form from guanine-rich tracts, but the extent of their formation in cellular RNA and details of their role in RNA biology remain poorly defined. Herein, we first delineate the presence of endogenous RNA G4s in the human cytoplasmic transcriptome via the binding sites of G4-interacting proteins, DDX3X (previously published), DHX36 and GRSF1. We demonstrate that a sub-population of these RNA G4s are reliably detected as folded structures in cross-linked cellular lysates using the G4 structure-specific antibody BG4. The 5′ UTRs of protein coding mRNAs show significant enrichment in folded RNA G4s, particularly those for ribosomal proteins. Mutational disruption of G4s in ribosomal protein UTRs alleviates translation in vitro, whereas in cells, depletion of G4-resolving helicases or treatment with G4-stabilising small molecules inhibit the translation of ribosomal protein mRNAs. Our findings point to a common mode for translational co-regulation mediated by G4 structures. The results reveal a potential avenue for therapeutic intervention in diseases with dysregulated translation, such as cancer.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1742
Author(s):  
Stefania Mantziou ◽  
Georgios S. Markopoulos

Long non-coding RNAs (lncRNAs) have emerged during the post-genomic era as significant epigenetic regulators. Viral-like 30 elements (VL30s) are a family of mouse retrotransposons that are transcribed into functional lncRNAs. Recent data suggest that VL30 RNAs are efficiently packaged in small extracellular vesicles (SEVs) through an SEV enrichment sequence. We analysed VL30 elements for the presence of the distinct 26 nt SEV enrichment motif and found that SEV enrichment is an inherent hallmark of the VL30 family, contained in 36 full-length elements, with a widespread chromosomal distribution. Among them, 25 elements represent active, present-day integrations and contain an abundance of regulatory sequences. Phylogenetic analysis revealed a recent spread of SEV-VL30s from 4.4 million years ago till today. Importantly, 39 elements contain an SFPQ-binding motif, associated with the transcriptional induction of oncogenes. Most SEV-VL30s reside in transcriptionally active regions, as characterised by their distribution adjacent to candidate cis-regulatory elements (cCREs). Network analysis of SEV-VL30-associated genes suggests a distinct transcriptional footprint associated with embryonal abnormalities and neoplasia. Given the established role of VL30s in oncogenesis, we conclude that their potential to spread through SEVs represents a novel mechanism for non-coding RNA biology with numerous implications for cellular homeostasis and disease.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xinmin Li ◽  
Cun-Yu Wang

AbstractRNA sequencing (RNAseq) can reveal gene fusions, splicing variants, mutations/indels in addition to differential gene expression, thus providing a more complete genetic picture than DNA sequencing. This most widely used technology in genomics tool box has evolved from classic bulk RNA sequencing (RNAseq), popular single cell RNA sequencing (scRNAseq) to newly emerged spatial RNA sequencing (spRNAseq). Bulk RNAseq studies average global gene expression, scRNAseq investigates single cell RNA biology up to 20,000 individual cells simultaneously, while spRNAseq has ability to dissect RNA activities spatially, representing next generation of RNA sequencing. This article highlights these technologies, characteristic features and suitable applications in precision oncology.


2021 ◽  
Vol 7 (4) ◽  
pp. 72
Author(s):  
Nicholas C. Lister ◽  
Ashley M. Milton ◽  
Benjamin J. Hanrahan ◽  
Paul D. Waters

Currently there are nine known examples of transmissible cancers in nature. They have been observed in domestic dog, Tasmanian devil, and six bivalve species. These tumours can overcome host immune defences and spread to other members of the same species. Non-coding RNAs (ncRNAs) are known to play roles in tumorigenesis and immune system evasion. Despite their potential importance in transmissible cancers, there have been no studies on ncRNA function in this context to date. Here, we present possible applications of the CRISPR/Cas system to study the RNA biology of transmissible cancers. Specifically, we explore how ncRNAs may play a role in the immortality and immune evasion ability of these tumours.


2021 ◽  
Author(s):  
Tamas Ryszard Sztanka-Toth ◽  
Marvin Jens ◽  
Nikos Karaiskos ◽  
Nikolaus Rajewsky

Spatial sequencing methods increasingly gain popularity within RNA biology studies. State-of-the-art techniques can read mRNA expression levels from tissue sections and at the same time register information about the original locations of the molecules in the tissue. The resulting datasets are processed and analyzed by accompanying software which, however, is incompatible across inputs from different technologies. Here, we present spacemake, a modular, robust and scalable spatial transcriptomics pipeline built in snakemake and python. Spacemake is designed to handle all major spatial transcriptomics datasets and can be readily configured to run on other technologies. It can process and analyze several samples in parallel, even if they stem from different experimental methods. Spacemake's unified framework enables reproducible data processing from raw sequencing data to automatically generated downstream analysis reports. Moreover, spacemake is built with a modular design and offers additional functionality such as sample merging, saturation analysis and analysis of long-reads as separate modules. Moreover, spacemake employs novoSpaRc to integrate spatial and single-cell transcriptomics data, resulting in increased gene counts for the spatial dataset. Spacemake is open-source, extendable and can be readily integrated with existing computational workflows.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanjun He ◽  
Lili Li ◽  
Yixiu Yao ◽  
Yulin Li ◽  
Huiqing Zhang ◽  
...  

Abstract Background Cucumber green mottle mosaic virus (CGMMV) causes substantial global losses in cucurbit crops, especially watermelon. N6-methyladenosine (m6A) methylation in RNA is one of the most important post-transcriptional modification mechanisms in eukaryotes. It has been shown to have important regulatory functions in some model plants, but there has been no research regarding m6A modifications in watermelon. Results We measured the global m6A level in resistant watermelon after CGMMV infection using a colorimetric method. And the results found that the global m6A level significantly decreased in resistant watermelon after CGMMV infection. Specifically, m6A libraries were constructed for the resistant watermelon leaves collected 48 h after CGMMV infection and the whole-genome m6A-seq were carried out. Numerous m6A modified peaks were identified from CGMMV-infected and control (uninfected) samples. The modification distributions and motifs of these m6A peaks were highly conserved in watermelon transcripts but the modification was more abundant than in other reported crop plants. In early response to CGMMV infection, 422 differentially methylated genes (DMGs) were identified, most of which were hypomethylated, and probably associated with the increased expression of watermelon m6A demethylase gene ClALKBH4B. Gene Ontology (GO) analysis indicated quite a few DMGs were involved in RNA biology and stress responsive pathways. Combined with RNA-seq analysis, there was generally a negative correlation between m6A RNA methylation and transcript level in the watermelon transcriptome. Both the m6A methylation and transcript levels of 59 modified genes significantly changed in response to CGMMV infection and some were involved in plant immunity. Conclusions Our study represents the first comprehensive characterization of m6A patterns in the watermelon transcriptome and helps to clarify the roles and regulatory mechanisms of m6A modification in watermelon in early responses to CGMMV.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guan Wang ◽  
Traci Kitaoka ◽  
Ali Crawford ◽  
Qian Mao ◽  
Andrew Hesketh ◽  
...  

AbstractRNA-seq has matured and become an important tool for studying RNA biology. Here we compared two RNA-seq (MGI DNBSEQ and Illumina NextSeq 500) and two microarray platforms (GeneChip Human Transcriptome Array 2.0 and Illumina Expression BeadChip) in healthy individuals administered recombinant human erythropoietin for transcriptome-wide quantification of differential gene expression. The results show that total RNA DNB-seq generated a multitude of target genes compared to other platforms. Pathway enrichment analyses revealed genes correlate to not only erythropoiesis and oxygen transport but also a wide range of other functions, such as tissue protection and immune regulation. This study provides a knowledge base of genes relevant to EPO biology through cross-platform comparisons and validation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Omar Orellana ◽  
Orna Amster-Choder ◽  
Rajat Banerjee ◽  
Jiqiang Ling
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Maarten M. G. van den Hoogenhof ◽  
Hamid El Azzouzi ◽  
Abdelaziz Beqqali

Sign in / Sign up

Export Citation Format

Share Document