Local (Gauge) Invariance

Author(s):  
Masud Chaichian ◽  
Nikolai F. Nelipa
1990 ◽  
Vol 31 (6) ◽  
pp. 1544-1550 ◽  
Author(s):  
Huan‐Qiang Zhou ◽  
Lin‐Jie Jiang ◽  
Ping‐Feng Wu

1997 ◽  
Vol 55 (3) ◽  
pp. 1580-1582 ◽  
Author(s):  
H. W. L. Naus

1980 ◽  
Vol 48 (3) ◽  
pp. 793-798 ◽  
Author(s):  
Masakazu Ichiyanagi

2015 ◽  
Vol 92 (5) ◽  
Author(s):  
Helmut Haberzettl ◽  
Xiao-Yun Wang ◽  
Jun He

2006 ◽  
Vol 352 (4-5) ◽  
pp. 267-271 ◽  
Author(s):  
Liang-Cheng Tu ◽  
Cheng-Gang Shao ◽  
Jie Luo ◽  
Jun Luo

1987 ◽  
Vol 186 (2) ◽  
pp. 180-184 ◽  
Author(s):  
H.J. De Vega ◽  
E. Lopes

1999 ◽  
Vol 08 (02) ◽  
pp. 141-151 ◽  
Author(s):  
V. C. DE ANDRADE ◽  
J. G. PEREIRA

In the framework of the teleparallel equivalent of general relativity, we study the dynamics of a gravitationally coupled electromagnetic field. It is shown that the electromagnetic field is able not only to couple to torsion, but also, through its energy–momentum tensor, produce torsion. Furthermore, it is shown that the coupling of the electromagnetic field with torsion preserves the local gauge invariance of Maxwell's theory.


2010 ◽  
Vol 93 (2) ◽  
pp. 169-185
Author(s):  
Hendrik Grundling ◽  
Karl-Hermann Neeb

Sign in / Sign up

Export Citation Format

Share Document