boundary terms
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 30)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 258 ◽  
pp. 02004
Author(s):  
M.N. Khalil ◽  
A. Bakry ◽  
X. Chen ◽  
M. Deliyergiyev ◽  
A. Galal ◽  
...  

The potential and the density profile of the QCD flux-tube are investigated within the framework of the Luscher-Weisz (LW) string action with two boundary terms. The Numerical simulations involve 4D SU(3) Yang-Mills LGT at finite temperature. In general, we detect signatures of the two boundary terms considered in the LWstring action. Near the end of QCD Plateau, the LW string is yielding a static potential which is in a good agreement with the lattice data for source separations R ≥ 0.3 fm. However, at T/Tc = 0.9, the fit to the potential data improves with a good fit attained at R ≥ 0.7 fm. The mean-square width of the energy profile at T/Tc = 0.9 matches well the width of the LW string over distance scales R ≥ 0.5 fm.


Author(s):  
Henning Bostelmann ◽  
Daniela Cadamuro ◽  
Simone Del Vecchio

AbstractFor a subalgebra of a generic CCR algebra, we consider the relative entropy between a general (not necessarily pure) quasifree state and a coherent excitationthereof. We give a unified formula for this entropy in terms of single-particle modular data. Further, we investigate changes of the relative entropy along subalgebras arising from an increasing family of symplectic subspaces; here convexity of the entropy (as usually considered for the Quantum Null Energy Condition) is replaced with lower estimates for the second derivative, composed of “bulk terms” and “boundary terms”. Our main assumption is that the subspaces are in differential modular position, a regularity condition that generalizes the usual notion of half-sided modular inclusions. We illustrate our results in relevant examples, including thermal states for the conformal U(1)-current.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 463
Author(s):  
Laura Andrianopoli ◽  
Lucrezia Ravera

We review the geometric superspace approach to the boundary problem in supergravity, retracing the geometric construction of four-dimensional supergravity Lagrangians in the presence of a non-trivial boundary of spacetime. We first focus on pure N=1 and N=2 theories with negative cosmological constant. Here, the supersymmetry invariance of the action requires the addition of topological (boundary) contributions which generalize at the supersymmetric level the Euler-Gauss-Bonnet term. Moreover, one finds that the boundary values of the super field-strengths are dynamically fixed to constant values, corresponding to the vanishing of the OSp(N|4)-covariant supercurvatures at the boundary. We then consider the case of vanishing cosmological constant where, in the presence of a non-trivial boundary, the inclusion of boundary terms involving additional fields, which behave as auxiliary fields for the bulk theory, allows to restore supersymmetry. In all the cases listed above, the full, supersymmetric Lagrangian can be recast in a MacDowell-Mansouri(-like) form. We then report on the application of the results to specific problems regarding cases where the boundary is located asymptotically, relevant for a holographic analysis.


2021 ◽  
Vol 104 (10) ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
João M. S. Oliveira ◽  
Alexandre M. Pombo ◽  
Eugen Radu
Keyword(s):  

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Kenta Suzuki ◽  
Tadashi Takayanagi

Abstract In this paper we study a connection between Jackiw-Teitelboim (JT) gravity on two-dimensional anti de-Sitter spaces and a semiclassical limit of c < 1 two-dimensional string theory. The world-sheet theory of the latter consists of a space-like Liouville CFT coupled to a non-rational CFT defined by a time-like Liouville CFT. We show that their actions, disk partition functions and annulus amplitudes perfectly agree with each other, where the presence of boundary terms plays a crucial role. We also reproduce the boundary Schwarzian theory from the Liouville theory description. Then, we identify a matrix model dual of our two-dimensional string theory with a specific time-dependent background in c = 1 matrix quantum mechanics. Finally, we also explain the corresponding relation for the two-dimensional de-Sitter JT gravity.


Author(s):  
Anna Abbatiello ◽  
Miroslav Bulíček ◽  
Erika Maringová

The choice of the boundary conditions in mechanical problems has to reflect the interaction of the considered material with the surface. Still the assumption of the no-slip condition is preferred in order to avoid boundary terms in the analysis and slipping effects are usually overlooked. Besides the “static slip models”, there are phenomena that are not accurately described by them, e.g. at the moment when the slip changes rapidly, the wall shear stress and the slip can exhibit a sudden overshoot and subsequent relaxation. When these effects become significant, the so-called dynamic slip phenomenon occurs. We develop a mathematical analysis of Navier–Stokes-like problems with a dynamic slip boundary condition, which requires a proper generalization of the Gelfand triplet and the corresponding function space setting.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Wieland

Abstract In a region with a boundary, the gravitational phase space consists of radiative modes in the interior and edge modes at the boundary. Such edge modes are necessary to explain how the region couples to its environment. In this paper, we characterise the edge modes and radiative modes on a null surface for the tetradic Palatini-Holst action. Our starting point is the definition of the action and its boundary terms. We choose the least restrictive boundary conditions possible. The fixed boundary data consists of the radiative modes alone (two degrees of freedom per point). All other boundary fields are dynamical. We introduce the covariant phase space and explain how the Holst term alters the boundary symmetries. To infer the Poisson brackets among Dirac observables, we define an auxiliary phase space, where the SL(2, ℝ) symmetries of the boundary fields are manifest. We identify the gauge generators and second-class constraints that remove the auxiliary variables. All gauge generators are at most quadratic in the fundamental SL(2, ℝ) variables on phase space. We compute the Dirac bracket and identify the Dirac observables on the light cone. Finally, we discuss various truncations to quantise the system in an effective way.


Sign in / Sign up

Export Citation Format

Share Document