Late Palaeozoic — Early Mesozoic Plate Reorganization: Evolution and Demise of the Variscan Fold Belt

1993 ◽  
pp. 203-216 ◽  
Author(s):  
P. A. Ziegler
Author(s):  
Lars Stemmerik ◽  
Finn Dalhoff ◽  
Birgitte D. Larsen ◽  
Jens Lyck ◽  
Anders Mathiesen ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dalhoff, F., Larsen, B. D., Lyck, J., Mathiesen, A., & Nilsson, I. (1998). Wandel Sea Basin, eastern North Greenland. Geology of Greenland Survey Bulletin, 180, 55-62. https://doi.org/10.34194/ggub.v180.5086 _______________ The Wandel Sea Basin in eastern North Greenland is the northernmost of a series of fault-bounded Late Palaeozoic – Early Tertiary basins exposed along the eastern and northern margin of Greenland (Fig. 1). The basin and the surrounding shelf areas are located in a geologically complex region at the junction between the N–S trending Caledonian fold belt in East Greenland and the E–W trending Ellesmerian fold belt in North Greenland, and along the zone of later, Tertiary, continental break-up. The Wandel Sea Basin started to develop during the Carboniferous as a result of extension and rifting between Greenland and Norway, and Greenland and Spitsbergen (Håkansson & Stemmerik 1989), and was an area of accumulation during the Early Carboniferous – Early Tertiary period. Two main epochs of basin evolution have been recognised during previous studies of the basin fill: an early (late Palaeozoic – early Triassic) epoch characterised by a fairly simple system of grabens and half-grabens, and a late (Mesozoic) epoch dominated by strike-slip movements (Håkansson & Stemmerik 1989). The Mesozoic epoch only influenced the northern part of the basin, north of the Trolle Land fault zone (Fig. 1). Thus the northern and southern parts of the basin have very different structural and depositional histories, and accordingly different thermal histories and hydrocarbon potential. This paper summarises the results of a project supported by Energy Research Program (EFP-94), the purpose of which was to model the Wandel Sea Basin with special emphasis on hydrocarbon potential and late uplift history, and to provide biostratigraphic and sedimentological data that could improve correlation with Svalbard and the Barents Sea. It is mainly based on material collected during field work in Holm Land and Amdrup Land in the south-eastern part of the Wandel Sea Basin during 1993–1995 with additional data from eastern Peary Land (Stemmerik et al. 1996). Petroleum related field studies have concentrated on detailed sedimentological and biostratigraphic studies of the Carboniferous–Permian Sortebakker, Kap Jungersen, Foldedal and Kim Fjelde Formations in Holm Land and Amdrup Land (Fig. 2; Døssing 1995; Stemmerik 1996; Stemmerik et al. 1997). They were supplemented by a structural study of northern Amdrup Land in order to improve the understanding of the eastward extension of the Trolle Land fault system and possibly predict its influence in the shelf areas (Stemmerik et al. 1995a; Larsen 1996). Furthermore, samples for thermal maturity analysis and biostratigraphy were collected from the Mesozoic of Kap Rigsdagen and the Tertiary of Prinsesse Thyra Ø (Fig. 1).


1992 ◽  
Vol 6 ◽  
pp. 85-85
Author(s):  
J. M. Dickins

IGCP 203 - Permo-Triassic events of eastern Tethys and their intercontinental correlation - focussed on the Permian-Triassic boundary sequences and in particular there was a consensus that the distinctive biological changes were associated with strong sea-level and tectonic change, strong volcanic activity and a harsh climate. These factors were connected with an important change in the environment and with the exception perhaps of the climate, reflected deep-seated changes within the earth. The project also resulted in improving the physical understanding of the sequences and their biostratigraphy and correlation.IGCP 272 was developed, and was approved in 1988, to apply these results to understanding the Late Palaeozoic and Early Mesozoic and was focussed on the Pacific as integration around this region seemed to offer especially fruitful possibilities.Working group meetings up to the end of 1991 have been held in Australia (Newcastle and Hobart), New Zealand (Dunedin), South America (Sao Paulo and Buenos Aires) and North America (Washington). Meetings are planned in North America, Japan, Eastern Siberia or Thailand and western Europe (France-Spain-Austria).Special cooperation has developed with the Carboniferous, Permian and Triassic Subcommissions of IUGS and with IGCP 214 - Global Bio-events. Using the more exact time correlations developed it has now been possible to show that major geological and biological events (of different levels of significance) are associated with major boundaries already recognized in the World Standard Stratigraphical Time Scale. These comprise the Carboniferous-Permian, the mid-Permian (twofold subdivision, the Permian-Triassic (already recognized in earlier work), the Lower-Middle and Middle-Upper Triassic and the Triassic-Jurassic boundaries.A special achievement of the project has been to show the similar significance of the Midian-Dzhulfian boundary within the Upper Permian but corresponding closely to the traditional Lower-Upper Permian of China and the Middle-Upper Permian of Japan.Although there are also other events at levels which have not been investigated by the project, those outlined all seem to reflect important changes within the earth.


Nature ◽  
1986 ◽  
Vol 322 (6075) ◽  
pp. 162-165 ◽  
Author(s):  
R. A. Livermore ◽  
A. G. Smith ◽  
F. J. Vine

Sign in / Sign up

Export Citation Format

Share Document