fault system
Recently Published Documents


TOTAL DOCUMENTS

2423
(FIVE YEARS 767)

H-INDEX

71
(FIVE YEARS 6)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Abdorrahman Rajabi ◽  
Carles Canet ◽  
Pura Alfonso ◽  
Pouria Mahmoodi ◽  
Ali Yarmohammadi ◽  
...  

The Ab-Bid deposit, located in the Tabas-Posht e Badam metallogenic belt (TPMB) in Central Iran, is the largest Pb-Zn (±Cu) deposit in the Behadad-Kuhbanan mining district. Sulfide mineralization in the Ab-Bid deposit formed in Middle Triassic carbonate rocks and contains galena and sphalerite with minor pyrite, chalcopyrite, chalcocite, and barite. Silicification and dolomitization are the main wall-rock alteration styles. Structural and textural observations indicate that the mineralization occurs as fault fills with coarse-textured, brecciated, and replacement sulfides deposited in a bookshelf structure. The Ab-Bid ore minerals precipitated from high temperature (≈180–200 °C) basinal brines within the dolomitized and silicified carbonates. The sulfur isotope values of ore sulfides suggest a predominant thermochemical sulfate reduction (TSR) process, and the sulfur source was probably Triassic-Jurassic seawater sulfate. Given the current evidence, mineralization at Ab-Bid resulted from focusing of heated, over-pressurized brines of modified basinal origin into an active fault system. The association of the sulfide mineralization with intensely altered wall rock represents a typical example of such features in the Mississippi Valley-type (MVT) metallogenic domain of the TPMB. According to the structural data, the critical ore control is a bookshelf structure having mineralized dextral strike-slip faults in the northern part of the Ab-Bid reverse fault, which seems to be part of a sinistral brittle shear zone. Structural relationships also indicate that the strata-bound, fault-controlled Ab-Bid deposit was formed after the Middle Jurassic, and its formation may be related to compressive and deformation stages of the Mid-Cimmerian in the Middle Jurassic to Laramide orogenic cycle in the Late Cretaceous-Tertiary.


2022 ◽  
Author(s):  
Haekal Azief Haridhi ◽  
Bor-Shouh Huang ◽  
Kuo-Liang Wen ◽  
Arif Mirza ◽  
Syamsul Rizal ◽  
...  

Abstract. Near the northern border of Sumatra, the right-lateral strike-slip Sumatran Fault Zone splits into two branches and extends into the offshore, as revealed by seismic sounding surveys. However, due to its strike-slip faulting characteristics, the Sumatran Fault Zone’s activity is rarely believed to cause tsunami hazards in this region. According to two reprocessed reflection seismic profiles, the extended Sumatran Fault Zone is strongly associated with chaotic facies, indicating that large submarine landslides have been triggered. Coastal steep slopes and new subsurface characteristics of submarine landslide deposits were mapped using recently acquired high-resolution shallow bathymetry data. Slope stability analysis revealed some targets with steep morphology to be close to failure. In an extreme case, an earthquake of Mw 7 or more occurred, and the strong ground shaking triggered a submarine landslide off the northern shore of Sumatra. Based on a simulation of tsunami wave propagation in shallow water, the results of this study indicate a potential tsunami hazard from a submarine landslide triggered by the strike-slip fault system. The landslide tsunami hazard assessment and early warning systems in this study area can be improved on the basis of this proposed scenario.


Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 65-83
Author(s):  
Guido Maria Adinolfi ◽  
Raffaella De Matteis ◽  
Rita de Nardis ◽  
Aldo Zollo

Abstract. Improving the knowledge of seismogenic faults requires the integration of geological, seismological, and geophysical information. Among several analyses, the definition of earthquake focal mechanisms plays an essential role in providing information about the geometry of individual faults and the stress regime acting in a region. Fault plane solutions can be retrieved by several techniques operating in specific magnitude ranges, both in the time and frequency domain and using different data. For earthquakes of low magnitude, the limited number of available data and their uncertainties can compromise the stability of fault plane solutions. In this work, we propose a useful methodology to evaluate how well a seismic network, used to monitor natural and/or induced micro-seismicity, estimates focal mechanisms as a function of magnitude, location, and kinematics of seismic source and consequently their reliability in defining seismotectonic models. To study the consistency of focal mechanism solutions, we use a Bayesian approach that jointly inverts the P/S long-period spectral-level ratios and the P polarities to infer the fault plane solutions. We applied this methodology, by computing synthetic data, to the local seismic network operating in the Campania–Lucania Apennines (southern Italy) aimed to monitor the complex normal fault system activated during the Ms 6.9, 1980 earthquake. We demonstrate that the method we propose is effective and can be adapted for other case studies with a double purpose. It can be a valid tool to design or to test the performance of local seismic networks, and more generally it can be used to assign an absolute uncertainty to focal mechanism solutions fundamental for seismotectonic studies.


2022 ◽  
pp. 1-10
Author(s):  
Nemesio Heredia ◽  
Fidel Martín-González ◽  
Pedro Farias ◽  
Joaquín García-Sansegundo ◽  
David Pedreira ◽  
...  

Geosphere ◽  
2022 ◽  
Author(s):  
Charles C. Trexler ◽  
Eric Cowgill ◽  
Nathan A. Niemi ◽  
Dylan A. Vasey ◽  
Tea Godoladze

Although the Greater Caucasus Mountains have played a central role in absorbing late Cenozoic convergence between the Arabian and Eurasian plates, the orogenic architecture and the ways in which it accommodates modern shortening remain debated. Here, we addressed this problem using geologic mapping along two transects across the southern half of the western Greater Caucasus to reveal a suite of regionally coherent stratigraphic packages that are juxtaposed across a series of thrust faults, which we call the North Georgia fault system. From south to north within this system, stratigraphically repeated ~5–10-km-thick thrust sheets show systematically increasing bedding dip angles (<30° in the south to subvertical in the core of the range). Likewise, exhumation depth increases toward the core of the range, based on low-temperature thermochronologic data and metamorphic grade of exposed rocks. In contrast, active shortening in the modern system is accommodated, at least in part, by thrust faults along the southern margin of the orogen. Facilitated by the North Georgia fault system, the western Greater Caucasus Mountains broadly behave as an in-sequence, southward-propagating imbricate thrust fan, with older faults within the range progressively abandoned and new structures forming to accommodate shortening as the thrust propagates southward. We suggest that the single-fault-centric “Main Caucasus thrust” paradigm is no longer appropriate, as it is a system of faults, the North Georgia fault system, that dominates the architecture of the western Greater Caucasus Mountains.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Ahmed M. Eldosouky ◽  
Reda A. Y. El-Qassas ◽  
Luan Thanh Pham ◽  
Kamal Abdelrahman ◽  
Mansour S. Alhumimidi ◽  
...  

Saudi Arabia covers most of the Arabian Peninsula and is characterized by tectonic regimes ranging from Precambrian to Recent. Using gravity data to produce the lateral boundaries of subsurface density bodies, and edge detection of potential field data, a new subsurface structural map was created to decipher the structural framework controls on the distribution of gold deposits in Saudi Arabia. Moreover, we detected the relationships between major structures and mineral accumulations, thereby simultaneously solving the problem of edge detectors over complex tectonic patterns for both deeper and shallower origins. Analytic signal (ASg), theta map (TM), TDX, and softsign function (SF) filters were applied to gravity data of Saudi Arabia. The results unveil low connectivity along the Najd fault system (NFS) with depth, except perhaps for the central zones along each segment. The central zones are the location of significant gold mineralization, i.e., Fawarah, Gariat Avala, Hamdah, and Ghadarah. Moreover, major fault zones parallel to the Red Sea extend northward from the south, and their connectivity increases with depth and controls numerous gold mines, i.e., Jadmah, Wadi Bidah, Mamilah, and Wadi Leif. These fault zones intersect the NFS in the Midyan Terrane at the northern part of the AS, and their conjugation is suggested to be favorable for gold mineralization. The SF maps revealed the boundary between the Arabian Shield and Arabian Shelf, which comprises major shear zones, implying that most known mineralization sites are linked to post-accretionary structures and are not limited to the Najd fault system (NFS).


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260888
Author(s):  
Yanjun Xiao ◽  
Kuan Wang ◽  
Weiling Liu ◽  
Kai Peng ◽  
Feng Wan

The electrical control system of rapier weaving machines is susceptible to various disturbances during operation and is prone to failures. This will seriously affect the production and a fault diagnosis system is needed to reduce this effect. However, the existing popular fault diagnosis systems and methods need to be improved due to the limitations of rapier weaving machine process and electrical characteristics. Based on this, this paper presents an in-depth study of rapier loom fault diagnosis system and proposes a rapier loom fault diagnosis method combining edge expert system and cloud-based rough set and Bayesian network. By analyzing the process and fault characteristics of rapier loom, the electrical faults of rapier loom are classified into common faults and other faults according to the frequency of occurrence. An expert system is built in the field for edge computing based on knowledge fault diagnosis experience to diagnose common loom faults and reduce the computing pressure in the cloud. Collect loom fault data in the cloud, train loom fault diagnosis algorithms to diagnose other faults, and handle other faults diagnosed by the expert system. The effectiveness of loom fault diagnosis is verified by on-site operation and remote monitoring of the loom human-machine interaction system. Technical examples are provided for the research of loom fault diagnosis system.


Author(s):  
Catur Cahyaningsih ◽  
Yos Admojo

This paper analyzes how resource of past and prospective great earthquake on the Central Sulawesi Arm, adhere on topography analysis from several space-based source. To answer the question, we analysis the tectonic geomorphic, stream pattern, exhumed fault, geological mapping and seismicity data. Detailed tectonic geomorphic studies in Sulawesi still lacking due to tectonic and fault obscures.  For instance, Palu Koro Fault (PKF) was unpredictable, because the historical seismic records inevitably remain poorly documented and unrecognized fault strand, which was buried beneath abundant Quaternary alluvium subsequently obscured the fault trace. In other hand, the faults have been active during Quaternary must take into account because potentially dangerous, also the inactive faults during instrumental period  must be re-evaluated in order to have awareness for large future large earthquake. Surprisingly, recent seismic activity of PKF generate super shear rupture a Mw 7.5 earthquake on 28th September 2018 with average slip 41 mm/year, which over the past two decade quiet from any seismic activity. The seismic potential for large fault is essential, since it has been silent during the instrumental period. Therefore, our motivation in this study to produce detail tectonic geomorphic map of the region in local scale, which is currently not available to prepare better knowledge and awareness for the large future earthquake. We have use Shuttle Radar Topography Mission (SRTM) with resolution ~30m, which run by ArcGIS software to observed tectonic geomorphic evidence of fault system and supplement with structural, geological and bathymetric data’s as ware available to us. We relate this analysis with seismicity data from Centroid Moment Tensor Solution (CMT) to recognize the seismic source. Our results show the tectonic geomorphic of Central Sulawesi Arm due to nature extension of NNW-SSE left-lateral slip curving to WNW-ESE of Palu-Koro Fault (PKF), then transcript to N-S circular normal fault of Poso Fault (PF). The PF indicate replica of PKF curving, where has not been mapped previously. We have mapped 60 major onshore fault systems, 10 faults showed evidence maximal to rapid rate tectonic activity along instrumental periods. Based on our CMT analysis, Sulawesi Island is greatly dominated by oblique fault.


2021 ◽  
Vol 49 (4) ◽  
pp. 102-127
Author(s):  
E. G. Mirlin ◽  
T. I. Lygina ◽  
E. I. Chesalova

The analysis of altimetric data in combination with bathymetry and gravimetry materials in the north-eastern and southern sectors of the Pacific Ocean, as well as detailed data on the underwater relief, the structure of the sedimentary cover, the composition and absolute age of basalts obtained within the area of domestic geological exploration for ferromanganese nodules (the Clarion-Clipperton zone) is carried out. Structural trends formed by local cone-shaped local structures of presumably volcanic nature, grouped along transform faults belonging to various stages of the kinematics of the Pacific Plate, have been traced in the structure of the oceanic lithosphere at various scale levels. The first trend corresponds to the extension of the fault system corresponding to the spreading system on the crest of the East Pacific rise before the restructuring of its planned geometry in the Paleocene-Eocene, the second coincides with their extension after the change in the relative movement of the Pacific Plate. The trends are characterized by planned disagreement, and an increase in the number of seamounts is observed in the areas of their intersection. Within the area of detailed studies, obvious signs of volcanic-tectonic activity were revealed: high dissection of the underwater relief, hills of different heights with steep slopes, whose volcanic nature is confirmed by differentiated basalts raised from their slopes, the absolute age of which indicates the multistage outpourings that occurred in an intraplate environment. The angular velocity of rotation of the spreading axis and the linear velocity of its advance with changes in the kinematics of the Pacific plate are estimated and possible reasons for changes in its relative motion are considered. An improved scheme of adaptation of the spreading zone to a change in the direction of relative plate movement is proposed, acc0ording to which an essential factor of intraplate volcanic-tectonic activity is the relaxation of stresses in the plate caused by external influence on it.


Sign in / Sign up

Export Citation Format

Share Document