eastern australia
Recently Published Documents


TOTAL DOCUMENTS

5037
(FIVE YEARS 641)

H-INDEX

92
(FIVE YEARS 11)

2022 ◽  
Vol 26 (1) ◽  
pp. 183-195
Author(s):  
Ian Cartwright

Abstract. Baseflow to rivers comprises regional groundwater and lower-salinity intermediate water stores such as interflow, soil water, and bank return flows. Chemical mass balance (CMB) calculations based on the specific conductivity (SC) of rivers potentially estimate the groundwater contribution to baseflow. This study discusses the application of the CMB approach in rivers from south-eastern Australia and assesses the feasibility of calibrating recursive digital filters (RDFs) and sliding minima (SM) techniques based on streamflow data to estimate groundwater inflows. The common strategy of assigning the SC of groundwater inflows based on the highest annual river SC may not always be valid due to the persistent presence of lower-salinity intermediate waters. Rather, using the river SC from low-flow periods during drought years may be more realistic. If that is the case, the estimated groundwater inflows may be lower than expected, which has implications for assessing contaminant transport and the impacts of near-river groundwater extraction. Probably due to long-term variations in the proportion of groundwater in baseflow, the RDF and SM techniques cannot generally be calibrated using the CMB results to estimate annual baseflow proportions. Thus, it is not possible to extend the estimates of groundwater inflows using those methods, although in some catchments reasonable estimates of groundwater inflows can be made from annual streamflows. Short-term variations in the composition of baseflow also lead to baseflow estimates made using the CMB method being far more irregular than expected. This study illustrates that estimating baseflow, especially groundwater inflows, is not straightforward.


2022 ◽  
Author(s):  
Hayden P. Borland ◽  
Ben L. Gilby ◽  
Christopher J. Henderson ◽  
Rod M. Connolly ◽  
Bob Gorissen ◽  
...  

Abstract Context Landscape modification alters the condition of ecosystems and the structure of terrain, with widespread impacts on biodiversity and ecosystem functioning. Seafloor dredging impacts a diversity of flora and fauna in many coastal landscapes, and these processes also transform three-dimensional terrain features. The potential ecological significance of these terrain changes in urban seascapes has, however, not been investigated. Objectives We examined the effects of terrain variation on fish assemblages in 29 estuaries in eastern Australia, and tested whether dredging changes how fish associate with terrain features. Methods We surveyed fish assemblages with baited remote underwater video stations and quantified terrain variation with nine complementary metrics (e.g. depth, aspect, curvature, slope, roughness), extracted from bathymetry maps created with multi-beam sonar. Results Fish diversity and abundance were strongly linked to seafloor terrain in both natural and dredged estuaries, and were highest in shallow waters and near features with high curvature. Dredging, however, significantly altered the terrain of dredged estuaries and transformed the significance of terrain features for fish assemblages. Abundance and diversity switched from being correlated with lower roughness and steeper slopes in natural estuaries to being linked to features with higher roughness and gentler slopes in dredged estuaries. Conclusions Contrasting fish-terrain relationships highlight previously unrecognised ecological impacts of dredging, but indicate that plasticity in terrain use might be characteristic of assemblages in urban landscapes. Incorporating terrain features into spatial conservation planning might help to improve management outcomes, but we suggest that different approaches would be needed in natural and modified landscapes.


Tectonics ◽  
2022 ◽  
Author(s):  
Matthew J Campbell ◽  
Derek Hoy ◽  
Gideon Rosenbaum ◽  
Christopher Fielding ◽  
Charlotte M Allen

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 136
Author(s):  
Clare Leddin ◽  
Khageswor Giri ◽  
Kevin Smith

Perennial ryegrass (PRG) is an important forage grown on dairy farms in temperate regions globally, including south-eastern Australia. A forage value index (FVI) providing information on the seasonal production of commercially available PRG cultivars is currently available. Despite the importance of the nutritive value of pasture in dairy farm systems, the nutritive characteristics of PRG cultivars are not currently included in the FVI as they are not routinely measured in cultivar evaluation trials. This study investigated differences between cultivar functional groups (diploid and tetraploid). It also examined differences between individual cultivars within seasons at four locations in south-eastern Australia and examined how trial location affects cultivar ranking. Samples were collected from existing cultivar evaluation trials over a 3-year period and analysed for nutritive characteristics. There were differences (p < 0.05) between diploids and tetraploids for metabolisable energy (ME) and neutral detergent fibre (NDF) in each season at each location with a few exceptions in summer and autumn. Crude protein (CP) differed between functional groups in some seasons at some sites. Spearman rank correlations within season were strong for ME between trial locations (r = 0.78–0.96), moderate to high for NDF (0.51–0.86) and variable for CP (−0.69–0.56). These findings provide guidance on methods for implementing nutritive value testing in cultivar evaluation trials and support the imminent inclusion of ME in the Australian FVI. The ranking of cultivars for ME was more consistent across trial sites compared to NDF and CP, suggesting the latter two traits, in particular CP, are more sensitive to environmental influences. Based on these results, we do not recommend the inclusion of CP as an individual trait in the Australian FVI. A significantly larger dataset and further research on the genotype by environment interactions would be needed to reconsider this. The addition of ME in the Australian FVI will lead to better cultivar choices by farmers and could lead to more targeted perennial ryegrass breeding programs.


2022 ◽  
Vol preprint (2022) ◽  
Author(s):  
David Lindenmayer ◽  
Elle Bowd ◽  
Chris MacGregor ◽  
Lachlan McBurney

ABSTRACT Fire can have marked impacts on biodiversity and on ecosystem condition. However, it is the sequence of multiple fires over a prolonged period of time which can have the most marked effects on biodiversity and on ecosystem condition. A good understanding of these effects comes from long-term studies. In this article we outline some of the key perspectives on the effects of fire on ecosystems and biodiversity from two large-scale, long-term monitoring studies in south-eastern Australia. These are studies in the montane ash forests of the Central Highlands of Victoria and at Booderee National Park in the Jervis Bay Territory. These studies have shown that the effects of fires are strongly influenced by: (1) The condition of an ecosystem before a fire (e.g. the age of a forest at the time it is burnt). (2) Conditions after the fire such as the extent of herbivory in regenerating vegetation and whether the ecosystem is subject to post-fire (salvage) logging. (3) Fire history (e.g. the number of past fires and the time since the previous fire). And, (4) Interactions between fire and other ecosystem drivers such as logging. We discuss some of the key implications for conservation and resource management that arise from these studies including the need to: (a) Reduce the number of stressors in some ecosystems to facilitate post-fire recovery. (b) Recognize that pre-fire human disturbances can elevate fire severity in some forest ecosystems, with corresponding negative effects on elements of the biota, and, (c) Acknowledge the inherent patchiness of wildfires and the value of unburnt areas and places burnt at low severity as critical refugia for some species; it is critical that these locations are managed accordingly (e.g. by limited additional disturbances within them). Finally, many of the insights discussed in this article have emerged only through long-term studies. More long-term monitoring and research is needed to truly understand and better manage fire in Australian ecosystems.


Geoderma ◽  
2022 ◽  
Vol 405 ◽  
pp. 115442
Author(s):  
Bin Wang ◽  
Jonathan M. Gray ◽  
Cathy M. Waters ◽  
Muhuddin Rajin Anwar ◽  
Susan E. Orgill ◽  
...  

2022 ◽  
pp. 13-16
Author(s):  
Richard A. I. Drew ◽  
Meredith C. Romig

Abstract This chapter presents the classification of the dacine fauna of Papua New Guinea and associated biogeographical territories into two genera, Bactrocera Macquart (with 21 subgenera) and Dacus Fabricius (with three subgenera). These include the subgenus Diplodacus May, which occurs in north-eastern Australia and the Torres Strait Islands. A key to genera and subgenera recorded in the Australian-Pacific Region is provided.


Sign in / Sign up

Export Citation Format

Share Document