Geometric Realization of Simplicial Sets

Author(s):  
Peter Gabriel ◽  
Michel Zisman
Author(s):  
Friedhelm Waldhausen ◽  
Bjørn Jahren ◽  
John Rognes

This chapter deals with simple maps of finite simplicial sets, along with some of their formal properties. It begins with a discussion of simple maps of simplicial sets, presenting a proposition for the conditions that qualify a map of finite simplicial sets as a simple map. In particular, it considers a simple map as a weak homotopy equivalence. Weak homotopy equivalences have the 2-out-of-3 property, which combines the composition, right cancellation and left cancellation properties. The chapter proceeds by defining some relevant terms, such as Euclidean neighborhood retract, absolute neighborhood retract, Čech homotopy type, and degeneracy operator. It also describes normal subdivision of simplicial sets, geometric realization and subdivision, the reduced mapping cylinder, how to make simplicial sets non-singular, and the approximate lifting property.


Author(s):  
Friedhelm Waldhausen ◽  
Bjørn Jahren ◽  
John Rognes

Since its introduction by the author in the 1970s, the algebraic K-theory of spaces has been recognized as the main tool for studying parametrized phenomena in the theory of manifolds. However, a full proof of the equivalence relating the two areas has not appeared until now. This book presents such a proof, essentially completing the author's program from more than thirty years ago. The main result is a stable parametrized h-cobordism theorem, derived from a homotopy equivalence between a space of PL h-cobordisms on a space X and the classifying space of a category of simple maps of spaces having X as deformation retract. The smooth and topological results then follow by smoothing and triangulation theory. The proof has two main parts. The essence of the first part is a “desingularization,” improving arbitrary finite simplicial sets to polyhedra. The second part compares polyhedra with PL manifolds by a thickening procedure. Many of the techniques and results developed should be useful in other connections.


Author(s):  
Olivia Caramello

This chapter discusses several classical as well as new examples of theories of presheaf type from the perspective of the theory developed in the previous chapters. The known examples of theories of presheaf type that are revisited in the course of the chapter include the theory of intervals (classified by the topos of simplicial sets), the theory of linear orders, the theory of Diers fields, the theory of abstract circles (classified by the topos of cyclic sets) and the geometric theory of finite sets. The new examples include the theory of algebraic (or separable) extensions of a given field, the theory of locally finite groups, the theory of vector spaces with linear independence predicates and the theory of lattice-ordered abelian groups with strong unit.


1999 ◽  
Vol 33 (3) ◽  
pp. 17
Author(s):  
L. Lambán ◽  
V. Pascual ◽  
J. Rubío
Keyword(s):  

2013 ◽  
Vol 107 (4) ◽  
pp. 907-931 ◽  
Author(s):  
Seok-Jin Kang ◽  
Masaki Kashiwara ◽  
Euiyong Park

2006 ◽  
Vol 207 (2) ◽  
pp. 847-875 ◽  
Author(s):  
Kathryn Hess ◽  
Paul-Eugène Parent ◽  
Jonathan Scott ◽  
Andrew Tonks
Keyword(s):  

2020 ◽  
Vol 2020 (768) ◽  
pp. 93-147
Author(s):  
Charlotte Chan

AbstractWe prove a 1979 conjecture of Lusztig on the cohomology of semi-infinite Deligne–Lusztig varieties attached to division algebras over local fields. We also prove the two conjectures of Boyarchenko on these varieties. It is known that in this setting, the semi-infinite Deligne–Lusztig varieties are ind-schemes comprised of limits of certain finite-type schemes {X_{h}}. Boyarchenko’s two conjectures are on the maximality of {X_{h}} and on the behavior of the torus-eigenspaces of their cohomology. Both of these conjectures were known in full generality only for division algebras with Hasse invariant {1/n} in the case {h=2} (the “lowest level”) by the work of Boyarchenko–Weinstein on the cohomology of a special affinoid in the Lubin–Tate tower. We prove that the number of rational points of {X_{h}} attains its Weil–Deligne bound, so that the cohomology of {X_{h}} is pure in a very strong sense. We prove that the torus-eigenspaces of the cohomology group {H_{c}^{i}(X_{h})} are irreducible representations and are supported in exactly one cohomological degree. Finally, we give a complete description of the homology groups of the semi-infinite Deligne–Lusztig varieties attached to any division algebra, thus giving a geometric realization of a large class of supercuspidal representations of these groups. Moreover, the correspondence {\theta\mapsto H_{c}^{i}(X_{h})[\theta]} agrees with local Langlands and Jacquet–Langlands correspondences. The techniques developed in this paper should be useful in studying these constructions for p-adic groups in general.


2018 ◽  
Vol 83 (04) ◽  
pp. 1667-1679
Author(s):  
MATÍAS MENNI

AbstractLet ${\cal E}$ be a topos, ${\rm{Dec}}\left( {\cal E} \right) \to {\cal E}$ be the full subcategory of decidable objects, and ${{\cal E}_{\neg \,\,\neg }} \to {\cal E}$ be the full subcategory of double-negation sheaves. We give sufficient conditions for the existence of a Unity and Identity ${\cal E} \to {\cal S}$ for the two subcategories of ${\cal E}$ above, making them Adjointly Opposite. Typical examples of such ${\cal E}$ include many ‘gros’ toposes in Algebraic Geometry, simplicial sets and other toposes of ‘combinatorial’ spaces in Algebraic Topology, and certain models of Synthetic Differential Geometry.


Sign in / Sign up

Export Citation Format

Share Document