On the Iterative Solution of Ill-Conditioned Normal Equations by the Use of Lanczos Methods

Author(s):  
J. Kusche ◽  
T. Mayer-Gürr
2020 ◽  
Vol 41 (4) ◽  
pp. 1571-1589
Author(s):  
Henri Calandra ◽  
Serge Gratton ◽  
Elisa Riccietti ◽  
Xavier Vasseur

2020 ◽  
Vol 64 (5) ◽  
pp. 507-514
Author(s):  
Bezmenov V.M. ◽  
Keyword(s):  

Рассматривается построение и уравнивание аналитической пространственной фототриангуляции, ос- нованной на совместном использованием условия коллинеарности и условия компланарности векторов. Получена структура системы нормальных уравнений. Предлагаемое решение позволяет выполнять по- строение фототриангуляции с одновременным определением (уточнением) элементов внешнего ори- ентирования и внутреннего ориентирования съёмочной камеры. Для назначения начальных значений весов уравнений, составленных с использованием условия компланарности, для некоторой точки ис- следуемого объекта (местности) предлагается использовать ошибки определения пространственных координат точки, рассчитанные методом прямой фотограмметрической засечки для произвольного случая съёмки.


2004 ◽  
Vol 126 (3) ◽  
pp. 619-626 ◽  
Author(s):  
Hakan Ertu¨rk ◽  
Ofodike A. Ezekoye ◽  
John R. Howell

The boundary condition design of a three-dimensional furnace that heats an object moving along a conveyor belt of an assembly line is considered. A furnace of this type can be used by the manufacturing industry for applications such as industrial baking, curing of paint, annealing or manufacturing through chemical deposition. The object that is to be heated moves along the furnace as it is heated following a specified temperature history. The spatial temperature distribution on the object is kept isothermal through the whole process. The temperature distribution of the heaters of the furnace should be changed as the object moves so that the specified temperature history can be satisfied. The design problem is transient where a series of inverse problems are solved. The process furnace considered is in the shape of a rectangular tunnel where the heaters are located on the top and the design object moves along the bottom. The inverse design approach is used for the solution, which is advantageous over a traditional trial-and-error solution where an iterative solution is required for every position as the object moves. The inverse formulation of the design problem is ill-posed and involves a set of Fredholm equations of the first kind. The use of advanced solvers that are able to regularize the resulting system is essential. These include the conjugate gradient method, the truncated singular value decomposition or Tikhonov regularization, rather than an ordinary solver, like Gauss-Seidel or Gauss elimination.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1522
Author(s):  
Anna Concas ◽  
Lothar Reichel ◽  
Giuseppe Rodriguez ◽  
Yunzi Zhang

The power method is commonly applied to compute the Perron vector of large adjacency matrices. Blondel et al. [SIAM Rev. 46, 2004] investigated its performance when the adjacency matrix has multiple eigenvalues of the same magnitude. It is well known that the Lanczos method typically requires fewer iterations than the power method to determine eigenvectors with the desired accuracy. However, the Lanczos method demands more computer storage, which may make it impractical to apply to very large problems. The present paper adapts the analysis by Blondel et al. to the Lanczos and restarted Lanczos methods. The restarted methods are found to yield fast convergence and to require less computer storage than the Lanczos method. Computed examples illustrate the theory presented. Applications of the Arnoldi method are also discussed.


2021 ◽  
Vol 127 ◽  
pp. 105155
Author(s):  
Jian Chang ◽  
Lifang Wang ◽  
Jin-Kao Hao ◽  
Yang Wang

Sign in / Sign up

Export Citation Format

Share Document