Fixed Point Logics and Complexity Classes

2004 ◽  
pp. 177-210 ◽  
Author(s):  
Leonid Libkin
1987 ◽  
Vol 10 (1) ◽  
pp. 1-33
Author(s):  
Egon Börger ◽  
Ulrich Löwen

We survey and give new results on logical characterizations of complexity classes in terms of the computational complexity of decision problems of various classes of logical formulas. There are two main approaches to obtain such results: The first approach yields logical descriptions of complexity classes by semantic restrictions (to e.g. finite structures) together with syntactic enrichment of logic by new expressive means (like e.g. fixed point operators). The second approach characterizes complexity classes by (the decision problem of) classes of formulas determined by purely syntactic restrictions on the formation of formulas.


1995 ◽  
Vol 60 (2) ◽  
pp. 517-527 ◽  
Author(s):  
Martin Grohe

The notion of logical reducibilities is derived from the idea of interpretations between theories. It was used by Lovász and Gács [LG77] and Immerman [Imm87] to give complete problems for certain complexity classes and hence establish new connections between logical definability and computational complexity.However, the notion is also interesting in a purely logical context. For example, it is helpful to establish nonexpressibility results.We say that a class of τ-structures is a >complete problem for a logic under L-reductions if it is definable in [τ] and if every class definable in can be ”translated” into by L-formulae (cf. §4).We prove the following theorem:1.1. Theorem. There are complete problemsfor partial fixed-point logic andfor inductive fixed-point logic under quantifier-free reductions.The main step of the proof is to establish a new normal form for fixed-point formulae (which might be of some interest itself). To obtain this normal form we use theorems of Abiteboul and Vianu [AV91a] that show the equivalence between the fixed-point logics we consider and certain extensions of the database query language Datalog.In [Dah87] Dahlhaus gave a complete problem for least fixed-point logic. Since least fixed-point logic equals inductive fixed-point logic by a well-known result of Gurevich and Shelah [GS86], this already proves one part of our theorem.However, our class gives a natural description of the fixed-point process of an inductive fixed-point formula and hence sheds some light on completely different aspects of the logic than Dahlhaus's construction, which is strongly based on the features of least fixed-point formulae.


2003 ◽  
Author(s):  
Robin R. Vallacher ◽  
Andrzej Nowak ◽  
Matthew Rockloff
Keyword(s):  

1981 ◽  
Vol 1 (2) ◽  
pp. 133-144 ◽  
Author(s):  
Shaozhong Chen ◽  
Zuoshu Liu

1992 ◽  
Vol 139 (1) ◽  
pp. 50 ◽  
Author(s):  
P.G. Harrison ◽  
F. Naraghi

2000 ◽  
Vol 39 (02) ◽  
pp. 118-121 ◽  
Author(s):  
S. Akselrod ◽  
S. Eyal

Abstract:A simple nonlinear beat-to-beat model of the human cardiovascular system has been studied. The model, introduced by DeBoer et al. was a simplified linearized version. We present a modified model which allows to investigate the nonlinear dynamics of the cardiovascular system. We found that an increase in the -sympathetic gain, via a Hopf bifurcation, leads to sustained oscillations both in heart rate and blood pressure variables at about 0.1 Hz (Mayer waves). Similar oscillations were observed when increasing the -sympathetic gain or decreasing the vagal gain. Further changes of the gains, even beyond reasonable physiological values, did not reveal another bifurcation. The dynamics observed were thus either fixed point or limit cycle. Introducing respiration into the model showed entrainment between the respiration frequency and the Mayer waves.


2016 ◽  
Vol 2017 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Muhammad Usman Ali ◽  
◽  
Tayyab Kamran ◽  
Mihai Postolache ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document