Complete problems for fixed-point logics

1995 ◽  
Vol 60 (2) ◽  
pp. 517-527 ◽  
Author(s):  
Martin Grohe

The notion of logical reducibilities is derived from the idea of interpretations between theories. It was used by Lovász and Gács [LG77] and Immerman [Imm87] to give complete problems for certain complexity classes and hence establish new connections between logical definability and computational complexity.However, the notion is also interesting in a purely logical context. For example, it is helpful to establish nonexpressibility results.We say that a class of τ-structures is a >complete problem for a logic under L-reductions if it is definable in [τ] and if every class definable in can be ”translated” into by L-formulae (cf. §4).We prove the following theorem:1.1. Theorem. There are complete problemsfor partial fixed-point logic andfor inductive fixed-point logic under quantifier-free reductions.The main step of the proof is to establish a new normal form for fixed-point formulae (which might be of some interest itself). To obtain this normal form we use theorems of Abiteboul and Vianu [AV91a] that show the equivalence between the fixed-point logics we consider and certain extensions of the database query language Datalog.In [Dah87] Dahlhaus gave a complete problem for least fixed-point logic. Since least fixed-point logic equals inductive fixed-point logic by a well-known result of Gurevich and Shelah [GS86], this already proves one part of our theorem.However, our class gives a natural description of the fixed-point process of an inductive fixed-point formula and hence sheds some light on completely different aspects of the logic than Dahlhaus's construction, which is strongly based on the features of least fixed-point formulae.

1987 ◽  
Vol 10 (1) ◽  
pp. 1-33
Author(s):  
Egon Börger ◽  
Ulrich Löwen

We survey and give new results on logical characterizations of complexity classes in terms of the computational complexity of decision problems of various classes of logical formulas. There are two main approaches to obtain such results: The first approach yields logical descriptions of complexity classes by semantic restrictions (to e.g. finite structures) together with syntactic enrichment of logic by new expressive means (like e.g. fixed point operators). The second approach characterizes complexity classes by (the decision problem of) classes of formulas determined by purely syntactic restrictions on the formation of formulas.


1998 ◽  
Vol 9 ◽  
pp. 1-36 ◽  
Author(s):  
M. L. Littman ◽  
J. Goldsmith ◽  
M. Mundhenk

We examine the computational complexity of testing and finding small plans in probabilistic planning domains with both flat and propositional representations. The complexity of plan evaluation and existence varies with the plan type sought; we examine totally ordered plans, acyclic plans, and looping plans, and partially ordered plans under three natural definitions of plan value. We show that problems of interest are complete for a variety of complexity classes: PL, P, NP, co-NP, PP, NP^PP, co-NP^PP, and PSPACE. In the process of proving that certain planning problems are complete for NP^PP, we introduce a new basic NP^PP-complete problem, E-MAJSAT, which generalizes the standard Boolean satisfiability problem to computations involving probabilistic quantities; our results suggest that the development of good heuristics for E-MAJSAT could be important for the creation of efficient algorithms for a wide variety of problems.


1992 ◽  
Vol 02 (02) ◽  
pp. 221-236 ◽  
Author(s):  
IAIN A. STEWART

We refine the known result that the generalized word problem for finitely-generated subgroups of free groups is complete for P via logspace reductions and show that by restricting the lengths of the words in any instance and by stipulating that all words must be conjugates then we obtain complete problems for the complexity classes NSYMLOG, NL, and P. The proofs of our results range greatly: some are complexity-theoretic in nature (for example, proving completeness by reducing from another known complete problem), some are combinatorial, and one involves the characterization of complexity classes as problems describable in some logic.


1993 ◽  
Vol 18 (1) ◽  
pp. 65-92
Author(s):  
Iain A. Stewart

We consider three sub-logics of the logic (±HP)*[FOs] and show that these sub-logics capture the complexity classes obtained by considering logspace deterministic oracle Turing machines with oracles in NP where the number of oracle calls is unrestricted and constant, respectively; that is, the classes LNP and LNP[O(1)]. We conclude that if certain logics are of the same expressibility then the Polynomial Hierarchy collapses. We also exhibit some new complete problems for the complexity class LNP via projection translations (the first to be discovered: projection translations are extremely weak logical reductions between problems) and characterize the complexity class LNP[O(1)] as the closure of NP under a new, extremely strict truth-table reduction (which we introduce in this paper).


Author(s):  
Piotr Habela ◽  
Krzysztof Kaczmarski ◽  
Krzysztof Stencel ◽  
Kazimierz Subieta

2016 ◽  
Vol 27 (2) ◽  
pp. 27-48
Author(s):  
András Benczúr ◽  
Gyula I. Szabó

This paper introduces a generalized data base concept that unites relational and semi structured data models. As an important theoretical result we could find a quadratic decision algorithm for the implication problem of functional and join dependencies defined on the united data model. As practical contribution we presented a normal form for the new data model as a tool for data base design. With our novel representations of regular expressions, a more effective searching method could be developed. XML elements are described by XML schema languages such as a DTD or an XML Schema definition. The instances of these elements are semi-structured tuples. A semi-structured tuple is an ordered list of (attribute: value) pairs. We may think of a semi-structured tuple as a sentence of a formal language, where the values are the terminal symbols and the attribute names are the non-terminal symbols. In the authors' former work (Szabó and Benczúr, 2015) they introduced the notion of the extended tuple as a sentence from a regular language generated by a grammar where the non-terminal symbols of the grammar are the attribute names of the tuple. Sets of extended tuples are the extended relations. The authors then introduced the dual language, which generates the tuple types allowed to occur in extended relations. They defined functional dependencies (regular FD - RFD) over extended relations. In this paper they rephrase the RFD concept by directly using regular expressions over attribute names to define extended tuples. By the help of a special vertex labeled graph associated to regular expressions the specification of substring selection for the projection operation can be defined. The normalization for regular schemas is more complex than it is in the relational model, because the schema of an extended relation can contain an infinite number of tuple types. However, the authors can define selection, projection and join operations on extended relations too, so a lossless-join decomposition can be performed. They extended their previous model to deal with XML schema indicators too, e.g., with numerical constraints. They added line and set constructors too, in order to extend their model with more general projection and selection operators. This model establishes a query language with table join functionality for collected XML element data.


Author(s):  
Z. Abdul-Mehdi

This article will highlight the framework opted by the authors in developing a database query system for usage on mobile phones. As the development work is still in progress, the authors will share some of the approaches taken in developing a prototype for a relationally complete database query language. This work concentrates on developing an application-independent, relationally complete database query language. The remainder of this article is organized as follows. The next section presents some of the existing work related to the study. We then introduce and describe the framework undertaken in order to develop a database query system for mobile phones, and discuss the prototype of the database query language used by the system. We end with our conclusion.


Sign in / Sign up

Export Citation Format

Share Document