scholarly journals Planar Solidification from Undercooled Melt: An Approximation of a Dilute Binary Alloy for a Phase-field Model

Author(s):  
Denis Danilov
2010 ◽  
Vol 97-101 ◽  
pp. 3769-3772 ◽  
Author(s):  
Chang Sheng Zhu ◽  
Jun Wei Wang

Based on a thin interface limit 3D phase-field model by coupled the anisotropy of interfacial energy and self-designed AADCR to improve on the computational methods for solving phase-field, 3D dendritic growth in pure undercooled melt is implemented successfully. The simulation authentically recreated the 3D dendritic morphological fromation, and receives the dendritic growth rule being consistent with crystallization mechanism. An example indicates that AADCR can decreased 70% computational time compared with not using algorithms for a 3D domain of size 300×300×300 grids, at the same time, the accelerated algorithms’ computed precision is higher and the redundancy is small, therefore, the accelerated method is really an effective method.


2005 ◽  
Vol 13 (3) ◽  
pp. 299-319 ◽  
Author(s):  
Dong-Hee Yeon ◽  
Pil-Ryung Cha ◽  
Ji-Hee Kim ◽  
Martin Grant ◽  
Jong-Kyu Yoon

2013 ◽  
Vol 470 ◽  
pp. 100-103
Author(s):  
Dong Sheng Chen ◽  
Ming Chen ◽  
Rui Chang Wang

PFM (phase field method) was employed to study microstructure evolution, and considering the effect of solute concentration to the undercooling, we developed a phase field model for binary alloy on the basis of pure substance model. In the paper, the temperature field and solute field were coupled together in the phase field model to calculate the crystal growth of magnesium alloy in directional solidification. The simulation results showed a non-planar crystal growth of planar to cellular to columnar dendrite, the comparison of different dendrite patterns were carried out in the numerical simulation, and with the increasing of the anisotropy, the second dendrite arms became more developed.


2015 ◽  
Vol 12 (11) ◽  
pp. 4289-4296 ◽  
Author(s):  
Li Feng ◽  
Jinfang Jia ◽  
Changsheng Zhu ◽  
Yang Lu ◽  
Rongzhen Xiao ◽  
...  

2016 ◽  
Vol 8 ◽  
pp. 9-18
Author(s):  
Jie Liao

A phase field model for binary alloy solidification with boundary interface intersection is developed. In the phase field model, the heat and solute conservation equations are appropriately modified to account for the presence of heat and solute rejection inside the diffuse interface, and a relaxation boundary condition for the phase field variable is introduced to balance the interface energy and boundary surface energy in the multiphase contact region. The thin interface asymptotic analysis is applied on the phase field model to yield the free interface problem with dynamic contact point condition.


Sign in / Sign up

Export Citation Format

Share Document