isothermal solidification
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4600
Author(s):  
Mojtaba Naalchian ◽  
Masoud Kasiri-Asgarani ◽  
Morteza Shamanian ◽  
Reza Bakhtiari ◽  
Hamid Reza Bakhsheshi-Rad ◽  
...  

Phase transformations and the melting range of the interlayer BNi-3 were investigated by differential scanning calorimetry, which showed three stages of crystallization during heating. There were three exothermic peaks that indicated crystallization in the solid state. The cobalt-based X-45 and FSX-414 superalloys were bonded with interlayer BNi-3 at a constant holding time of 10 min with bonding temperatures of 1010, 1050, 1100, and 1150 °C using a vacuum diffusion brazing process. Examination of microstructural changes in the base metals with light microscopy and scanning electron microscopy coupled with X-ray spectroscopy based on the energy distribution showed that increasing temperature caused a solidification mode, such that the bonding centerline at 1010 °C/10 min included a γ-solid solution, Ni3B, Ni6Si2B, and Ni3Si. The athermally solidified zone of the transient liquid phase (TLP)-bonded sample at 1050 °C/10 min involved a γ-solid solution, Ni3B, CrB, Ni6Si2B, and Ni3Si. Finally, isothermal solidification was completed within 10 min at 1150 °C. The diffusion-affected zones on both sides had three distinct zones: a coarse block precipitation zone, a fine and needle-like mixed-precipitation zone, and a needle-like precipitation zone. By increasing the bonding temperature, the diffusion-affected zone became wider and led to dissolution.


2021 ◽  
Vol 8 (8) ◽  
pp. 210501
Author(s):  
Lan Zhan ◽  
Mingzhong Wu ◽  
Xiangge Qin

In this paper, based on the embedded atom method (EAM) potential, molecular dynamics simulations of the solidification process of Al–4 at.%Cu alloy is carried out. The Al–Cu alloy melt is placed at different temperatures for isothermal solidification, and each stage of the entire solidification process is tracked, including homogeneous nucleation, nucleus growth, grain coarsening and microstructure evolution. In the nucleation stage, the transition from high temperature to low temperature manifests a change from spontaneous nucleation mode to divergent nucleation mode. The critical nucleation temperature of the Al–Cu alloy is determined to be about 0.42 T m ( T m is the melting point of Al–4 at.%Cu) by calculating the nucleation rate and the crystal nucleus density. In the nucleus growth stage, two ways of growing up are observed, that is, a large crystal nucleus will absorb a smaller heterogeneous crystal nucleus, and two very close crystal nuclei will merge. In the microstructure evolution of the isothermally solidified Al–Cu alloy, it is emerged that the interior of all nanocrystalline grains are long-period stacking structure composed of face centred cubic (FCC) and hexagonal close-packed (HCP). These details provide important information for the production of Al–Cu binary alloy nano-polycrystalline products.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 479
Author(s):  
Zhan Sun ◽  
Xi Chen ◽  
Lixia Zhang ◽  
Saisai Zhang ◽  
Jicai Feng

Transient liquid phase (TLP) diffusion bonding of DZ40M cobalt-based superalloy was carried out using a self-made NiCrCoWB intermediate layer. The typical microstructure of the joint was investigated. The effect of holding time on the microstructural evolution and the tensile strength of the brazed joints was studied. The tensile strength of the joints TLP bonded at 1160 °C for 60 min reached the maximum value of 487 MPa, which was 88.6% of the base metal strength. The diffusion of boron and the evolution of the eutectic zone were numerically studied. The time needed for isothermal solidification completion was calculated and predicted, which was well in accordance with the experimental results.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 192
Author(s):  
Si-Young Lee ◽  
Hyun-Jun Lee ◽  
Jong-Hee Baek ◽  
Sung Soo Park ◽  
Jung Gu Lee

Titanium and Zircaloy-4 dissimilar alloys were brazed with a zirconium-titanium-copper-nickel amorphous filler alloy, and the resulting joint structures as well as their corrosion properties were examined. The microstructure of the brazed joints was investigated according to brazing holding time at 850 °C, and the corrosion property was analyzed by potentiodynamic polarization. During brazing, joints were produced by diffusion-induced isothermal solidification of the molten filler alloy. At a relatively brief brazing holding time of 5 min, a large segregation zone consisting of an active α-phase and a nobler intermetallic phase was generated in the joint center, which suffered from micro-galvanic corrosion. The presence of alloyed titanium deteriorated the nobility of the α-zirconium phase near the joint and induced galvanic coupling with cathodic base metals, resulting in massive localized corrosion. This localized corrosion caused the pitting behavior at the applied potential of −51.1~187.5 mV during anodic polarization. With a brazing holding time of 20 min, the concentration of the alloying elements was homogenized to eliminate the electrochemical potential difference and minimize the galvanic corrosion susceptibility of the joint region. This homogeneous joint resulted in a highly passive corrosion behavior comparable to that of the titanium base metal.


Sign in / Sign up

Export Citation Format

Share Document