Ray Transform on Riemannian Manifolds

Author(s):  
Vladimir A. Sharafutdinov
2019 ◽  
Vol 147 (11) ◽  
pp. 4901-4913 ◽  
Author(s):  
Maarten V. de Hoop ◽  
Teemu Saksala ◽  
Jian Zhai

2015 ◽  
Vol 117 (2) ◽  
pp. 231 ◽  
Author(s):  
Joonas Ilmavirta

We reduce the broken ray transform on some Riemannian manifolds (with corners) to the geodesic ray transform on another manifold, which is obtained from the original one by reflection. We give examples of this idea and present injectivity results for the broken ray transform using corresponding earlier results for the geodesic ray transform. Examples of manifolds where the broken ray transform is injective include Euclidean cones and parts of the spheres $S^n$. In addition, we introduce the periodic broken ray transform and use the reflection argument to produce examples of manifolds where it is injective. We also give counterexamples to both periodic and nonperiodic cases. The broken ray transform arises in Calderón's problem with partial data, and we give implications of our results for this application.


2010 ◽  
Vol 0 (-1) ◽  
pp. 437-446 ◽  
Author(s):  
S. K. Saha
Keyword(s):  

2019 ◽  
Vol 16 (4) ◽  
pp. 557-566
Author(s):  
Denis Ilyutko ◽  
Evgenii Sevost'yanov

We study homeomorphisms of Riemannian manifolds with unbounded characteristic such that the inverse mappings satisfy the Poletsky-type inequality. It is established that their families are equicontinuous if the function Q which is related to the Poletsky inequality and is responsible for a distortion of the modulus, is integrable in the given domain, here the original manifold is connected and the domain of definition and the range of values of mappings have compact closures.


1982 ◽  
Vol 180 (4) ◽  
pp. 429-444 ◽  
Author(s):  
Old?ich Kowalski ◽  
Lieven Vanhecke

Author(s):  
Alessandro Goffi ◽  
Francesco Pediconi

AbstractWe investigate strong maximum (and minimum) principles for fully nonlinear second-order equations on Riemannian manifolds that are non-totally degenerate and satisfy appropriate scaling conditions. Our results apply to a large class of nonlinear operators, among which Pucci’s extremal operators, some singular operators such as those modeled on the p- and $$\infty $$ ∞ -Laplacian, and mean curvature-type problems. As a byproduct, we establish new strong comparison principles for some second-order uniformly elliptic problems when the manifold has nonnegative sectional curvature.


Sign in / Sign up

Export Citation Format

Share Document