The Motoneuronal Organization of the Spinal Accessory Nuclear Complex

Author(s):  
Eva B. Krammer ◽  
Martin F. Lischka ◽  
Thomas P. Egger ◽  
Maria Riedl ◽  
Helmut Gruber
BMJ ◽  
1879 ◽  
Vol 1 (945) ◽  
pp. 212-212
Author(s):  
W. Rivington

2021 ◽  
Author(s):  
Mariano Socolovsky ◽  
Gilda di Masi ◽  
Gonzalo Bonilla ◽  
Ana Lovaglio ◽  
Kartik G Krishnan

Abstract BACKGROUND Traumatic brachial plexus injuries cause long-term maiming of patients. The major target function to restore in complex brachial plexus injury is elbow flexion. OBJECTIVE To retrospectively analyze the correlation between the length of the nerve graft and the strength of target muscle recovery in extraplexual and intraplexual nerve transfers. METHODS A total of 51 patients with complete or near-complete brachial plexus injuries were treated with a combination of nerve reconstruction strategies. The phrenic nerve (PN) was used as axon donor in 40 patients and the spinal accessory nerve was used in 11 patients. The recipient nerves were the anterior division of the upper trunk (AD), the musculocutaneous nerve (MC), or the biceps branches of the MC (BBs). An index comparing the strength of elbow flexion between the affected and the healthy arms was correlated with the choice of target nerve recipient and the length of nerve grafts, among other parameters. The mean follow-up was 4 yr. RESULTS Neither the choice of MC or BB as a recipient nor the length of the nerve graft showed a strong correlation with the strength of elbow flexion. The choice of very proximal recipient nerve (AD) led to axonal misrouting in 25% of the patients in whom no graft was employed. CONCLUSION The length of the nerve graft is not a negative factor for obtaining good muscle recovery for elbow flexion when using PN or spinal accessory nerve as axon donors in traumatic brachial plexus injuries.


Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1393-1405 ◽  
Author(s):  
David R H Evans ◽  
Neil K Brewster ◽  
Qunli Xu ◽  
Adele Rowley ◽  
Brent A Altheim ◽  
...  

Abstract Transcription of nuclear genes usually involves trans-activators, whereas repression is exerted by chromatin. For several genes the transcription mediated by trans-activators and the repression mediated by chromatin depend on the CP complex, a recently described abundant yeast nuclear complex of the Pob3 and Cdc68/Spt16 proteins. We report that the N-terminal third of the Saccharomyces cerevisiae Cdc68 protein is dispensable for gene activation but necessary for the maintenance of chromatin repression. The absence of this 300-residue N-terminal domain also decreases the need for the Swi/Snf chromatin-remodeling complex in transcription and confers an Spt- effect characteristic of chromatin alterations. The repression domain, and indeed the entire Cdc68 protein, is highly conserved, as shown by the sequence of the Cdc68 functional homolog from the yeast Kluyveromyces lactis and by database searches. The repression-defective (truncated) form of Cdc68 is stable but less active at high temperatures, whereas the known point-mutant form of Cdc68, encoded by three independent mutant alleles, alters the N-terminal repression domain and destabilizes the mutant protein.


Author(s):  
José M. Palacios-García ◽  
Julissa Vizcarra-Melgar ◽  
Serafín Sánchez-Gómez

2015 ◽  
Vol 2 (1) ◽  
pp. 51-53 ◽  
Author(s):  
Abdullah M. Al-Ajmi ◽  
Rossen T. Rousseff ◽  
Todor Shamov ◽  
Mohammad J. Ismail ◽  
Faisal T. Sayer

Sign in / Sign up

Export Citation Format

Share Document