core promoter
Recently Published Documents


TOTAL DOCUMENTS

1336
(FIVE YEARS 180)

H-INDEX

79
(FIVE YEARS 6)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Nabamita Boruah ◽  
Chongtham Sovachandra Singh ◽  
Pooja Swargiary ◽  
Hughbert Dkhar ◽  
Anupam Chatterjee

Abstract Background Raw areca nut (RAN) consumption induces oral, esophageal and gastric cancers, which are significantly associated with the overexpression of pituitary tumor transforming gene 1/securin and chromosomal instability (CIN). An association of Securin/PTTG1 upregulation and gastric cancer in human was also demonstrated earlier. Since the molecular mechanism underlying securin upregulation remains unclear, this study intended to investigate the association of securin upregulation with the Rb-E2F1 circuit and epigenetic histone (H3) modification patterns both globally and in the promoter region of the securin gene. Methods Six groups of mice were used, and in the treated group, each mouse consumed 1 mg of RAN extract with lime per day ad libitum in the drinking water for 60 days, after which the dose was increased by 1 mg every 60 days. Histopathological evaluation of stomach tissues was performed and securin expression was analysed by immunoblotting as well as by immunohistochemistry. ChIP-qPCR assays were performed to evaluate the recruitment of different histone modifications in the core promoter region of securin gene as well as its upstream and downstream regions. Results All mice developed gastric cancer with securin overexpression after 300 days of feeding. Immunohistochemistry data revealed hyperphosphorylation of Rb and upregulation of E2F1 in the RAN-treated samples. Increased trimethylation of H3 lysine 4 and acetylation of H3 lysine 9 and 18 both globally and in the promoter region of the securin gene were observed by increasing the levels of lysine-N-methyltransferase 2A, lysine-acetyltransferase, EP-300 and PCAF after RAN treatment. ChIP-qPCR data revealed that the quantity of DNA fragments retrieved from the immunoprecipitated samples was maximum in the -83 to -192 region than further upstream and the downstream of the promoter for H3K4Me3, H3K9ac, H3K18ac and H3K9me3. Conclusions RAN-mediated pRb-inactivation induced securin upregulation, a putative E2F1 target, by inducing misregulation in chromatin remodeling in its promoter region, which led to transcriptional activation and subsequent development of chromosomal instability. Therefore, present results have led to the hypothesis that RAN-induced changes in the epigenetic landscape, securin overexpression and subsequent elevation of chromosomal instability is probably byproducts of inactivation of the pRb pathway.


BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Teng Huang ◽  
Jiaheng Li ◽  
San Ming Wang

Abstract Background Bladder cancer is one of the most mortal cancers. Bladder cancer has distinct gene expression signature, highlighting altered gene expression plays important roles in bladder cancer etiology. However, the mechanism for how the regulatory disorder causes the altered expression in bladder cancer remains elusive. Core promoter controls transcriptional initiation. We hypothesized that mutation in core promoter abnormality could cause abnormal transcriptional initiation thereby the altered gene expression in bladder cancer. Methods In this study, we performed a genome-wide characterization of core promoter mutation in 77 Spanish bladder cancer cases. Results We identified 69 recurrent somatic mutations in 61 core promoters of 62 genes and 28 recurrent germline mutations in 20 core promoters of 21 genes, including TERT, the only gene known with core promoter mutation in bladder cancer, and many oncogenes and tumor suppressors. From the RNA-seq data from bladder cancer, we observed  altered expression of the core promoter-mutated genes. We further validated the effects of core promoter mutation on gene expression by using luciferase reporter gene assay. We also identified potential drugs targeting the core promoter-mutated genes. Conclusions Data from our study highlights that core promoter mutation contributes to bladder cancer development through altering gene expression.


2021 ◽  
Author(s):  
Dohoon Lee ◽  
Jeewon Yang ◽  
Sun Kim

The quantitative characterization of the transcriptional control by histone modifications (HMs) has been challenged by many computational studies, but still most of them exploit only partial aspects of intricate mechanisms involved in gene regulation, leaving a room for improvement. We present Chromoformer, a new transformer-based deep learning architecture that achieves the state-of-the-art performance in the quantitative deciphering of the histone codes of gene regulation. The core essence of Chromoformer architecture lies in the three variants of attention operation, each specialized to model individual hierarchy of three-dimensional (3D) transcriptional regulation including (1) histone codes at core promoters, (2) pairwise interaction between a core promoter and a distal cis-regulatory element mediated by 3D chromatin interactions, and (3) the collective effect of the pairwise cis-regulations. In-depth interpretation of the trained model behavior based on attention scores suggests that Chromoformer adaptively exploits the distant dependencies between HMs associated with transcription initiation and elongation. We also demonstrate that the quantitative kinetics of transcription factories and polycomb group bodies, in which the coordinated gene regulation occurs through spatial sequestration of genes with regulatory elements, can be captured by Chromoformer. Together, our study shows the great power of attention-based deep learning as a versatile modeling approach for the complex epigenetic landscape of gene regulation and highlights its potential as an effective toolkit that facilitates scientific discoveries in computational epigenetics.


2021 ◽  
Author(s):  
Clarice K.Y. Hong ◽  
Barak A. Cohen

A classical model of gene regulation is that enhancers provide specificity whereas core promoters provide a modular site for the assembly of the basal transcriptional machinery. However, examples of core promoter specificity have led to an alternate hypothesis in which specificity is achieved by core promoters with different sequence motifs that respond differently to genomic environments containing different enhancers and chromatin landscapes. To distinguish between these models, we measured the activities of hundreds of diverse core promoters in four different genomic locations and, in a complementary experiment, six different core promoters at thousands of locations across the genome. Although genomic locations had large effects on expression, the intrinsic activities of different classes of promoters were preserved across genomic locations, suggesting that core promoters are modular regulatory elements whose activities are independently scaled up or down by different genomic locations. This scaling of promoter activities is nonlinear and depends on the genomic location and the strength of the core promoter. Our results support the classical model of regulation in which diverse core promoter motifs set the intrinsic strengths of core promoters, which are then amplified or dampened by the activities of their genomic environments.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiaolong Tang ◽  
Yahang Liang ◽  
Guorui Sun ◽  
Qingsi He ◽  
Hui Qu ◽  
...  

AbstractUbiquilin 4 (UBQLN4) is an important member of the ubiquitin-like protein family. An increasing number of studies have shown that UBQLN4 is an important regulator of tumorigenesis. Nevertheless, the biological function and detailed mechanisms of UBQLN4 in colorectal cancer (CRC) development and progression remain unclear. Here, we identified UBQLN4 upregulation in CRC tissues and it is positively associated with CRC size, TNM stage, and lymphatic metastasis. Patients with high UBQLN4 expression had a poor prognosis. Functionally, overexpression of UBQLN4 significantly promoted CRC cell proliferation, migration, and invasion, while UBQLN4 silencing elicited the opposite effect. This result was consistent with the conclusion that UBQLN4 expression correlated positively with the CRC size and lymphatic metastasis. In vivo, UBQLN4 silencing also inhibited tumor growth. Mechanistically, using gene set enrichment analysis (GSEA) and western blot experiments, we identified that UBQLN4 activated the Wnt/β-catenin signaling pathway to upregulate β-catenin and c-Myc expression, thereby promoting CRC proliferation, migration and invasion. A rescue experiment further verified this conclusion. Dual luciferase reporter, real-time quantitative PCR (RT-qPCR), western blot and chromatin immunoprecipitation (ChIP) assays indicated that the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) directly bound to the UBQLN4 core promoter region and activated its transcription, upregulating β-catenin and c-Myc expression to promote CRC progression. Thus, our findings suggest that UBQLN4 is a key oncogene in CRC and may be a promising target for the diagnosis and treatment of patients with CRC.


2021 ◽  
Author(s):  
Suzhen Lin ◽  
Ruinan Shen ◽  
Hong Pan ◽  
Lu He ◽  
Fang Fang ◽  
...  

Abstract BackgroundNeuroinflammation is known to be involved in the pathogenesis of Parkinson's disease (PD). Abnormal activation of microglia plays a key role in this pathological process. CD200R1 is a membrane glycoprotein primarily expressed in microglia in central nervous system responsible for transducing signaling maintaining microglia in stationary status. Our previous studies have demonstrated the dysregulation of CD200R1 and its involvement in PD pathogenesis. The binding of transcription factors with promoter regions is the basic and essential step for the regulation of gene expression. However, little is known about the human CD200R1 promoter region and the mechanism of the dysregulated expression of CD200R1 in PD. MethodsLuciferase reporter system was initially employed to identify the core region of CD200R1 promoter and figure out its potential transcription factors. Subsequently, we investigated the interaction adopting electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The regulatory function of the detected transcription factors were further proved through its down-regulation and overexpression. We then collected the peripheral blood mononuclear cells from both PD patients and their healthy counterparts with matched age and sex to evaluate whether consistent results existed under clinical setting. Ultimately, the mouse model was established through knocking-out the identified transcription factor and its role in neuroinflammation and pathogenesis of PD was explored. ResultsWe defined that the core promoter region of CD200R was located within -482 to -146 bp upstream of the translation initiation site (TIS). In addition, we demonstrated that NFKB1 directly bound to the CD200R1 core promoter region and regulated its transcriptional activity. Besides, the expression of NFKB1 and CD200R1 was significantly correlated in human peripheral blood mononuclear cells and knocking down NFKB1 significantly reduced CD200R1 expression. Moreover, both NFKB1 and CD200R1 were significantly downregulated in samples from PD patients. Furthermore, NFKB1-/- mice exhibited exacerbated microglia activation and dopaminergic neuron loss after MPTP treatment. ConclusionOur study provided novel understanding of the transcriptional regulation of CD200R1 and its role in microglia homeostasis in the pathogenesis of PD.


2021 ◽  
pp. gr.275750.121
Author(s):  
Debasish Sarkar ◽  
Z. Iris Zhu ◽  
Elisabeth R. Knoll ◽  
Emily Paul ◽  
David Landsman ◽  
...  

The Mediator complex is central to transcription by RNA polymerase II (Pol II) in eukaryotes. In budding yeast (Saccharomyces cerevisiae), Mediator is recruited by activators and associates with core promoter regions, where it facilitates pre-initiation complex (PIC) assembly, only transiently prior to Pol II escape. Interruption of the transcription cycle by inactivation or depletion of Kin28 inhibits Pol II escape and stabilizes this association. However, Mediator occupancy and dynamics have not been examined on a genome-wide scale in yeast grown in nonstandard conditions. Here we investigate Mediator occupancy following heat shock or CdCl2 exposure, with and without depletion of Kin28. We find that Pol II occupancy exhibits similar dependence on Mediator under normal and heat shock conditions. However, while Mediator association increases at many genes upon Kin28 depletion under standard growth conditions, little or no increase is observed at most genes upon heat shock, indicating a more stable association of Mediator after heat shock. Mediator remains associated upstream of the core promoter at genes repressed by heat shock or CdCl2 exposure whether or not Kin28 is depleted, suggesting that Mediator is recruited by activators but is unable to engage PIC components at these repressed targets. This persistent association is strongest at promoters that bind the HMGB family member Hmo1, and is reduced but not eliminated in hmo1∆ yeast. Finally, we show a reduced dependence on PIC components for Mediator occupancy at promoters after heat shock, further supporting altered dynamics or stronger engagement with activators under these conditions.


mBio ◽  
2021 ◽  
Author(s):  
Wamiah P. Chowdhury ◽  
Kenneth A. Satyshur ◽  
James L. Keck ◽  
Patricia J. Kiley

Transcription regulation is a key process in all living organisms, involving a myriad of transcription factors. In E. coli , the regulator of the iron-sulfur cluster biogenesis pathway, IscR, acts as a global transcription factor, activating the transcription of some pathways and repressing others.


Genomics ◽  
2021 ◽  
Author(s):  
Jananee Jaishankar ◽  
Lagan Bhatoa ◽  
Nidhi Patil ◽  
Preeti Srivastava

Author(s):  
Farmanullah Farmanullah ◽  
Mostafa Gouda ◽  
Zhang Min ◽  
Xu Sutong ◽  
Mohib Ullah KaKar ◽  
...  

Abstract Background Serine/threonine kinase 3 (AKT3) is a protein-coding gene that is associated with several cattle immune diseases including different tumors and cancers. The objective of this study was to investigate the differences in structures and functions of AKT3 of cow and buffalo cattle. Methods The sequence differences of gene-coding sequence (CDS) and core promoter region of AKT3 in cow and buffalo were analyzed by using bioinformatics tools and PCR sequencing. Also, the functional analysis of promoter regulating gene expression by RT-PCR was performed using 500 Holstein cows and buffalos. And, evaluation of AKT3 inflammatory response to the lipopolysaccharide (LPS)-induced mastitis was performed between both species. Results The results revealed the variation in 6 exons out of 13 exons of the two species of CDS. Also, 4 different regions in 3-kb promoters of the AKT3 gene were significantly different between cow and buffalo species, in which cow’s AKT3 promoter sequence region was started from − 371 to − 1247, while in buffalo, the sequence was started from − 371 to − 969 of the promoter crucial region. Thus, the promoter was overexpressed in cows compared to buffaloes. As a result, significant differences (P < 0.05) between the two species in the AKT3 gene expression level related to the LPS stimulation in their mammary epithelial cell line. Conclusions This study emphasized the great importance of the structural differences of AKT3 between the animal species on their different responses against immune diseases like mastitis.


Sign in / Sign up

Export Citation Format

Share Document