Metric Geometry in Normed Spaces

1962 ◽  
pp. 110-121
Author(s):  
Mahlon M. Day
1973 ◽  
pp. 142-174
Author(s):  
Mahlon M. Day

1958 ◽  
pp. 110-121 ◽  
Author(s):  
Mahlon M. Day

Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the metric geometry of Teichmüller space. It first explains how one can think of Teich(Sɡ) as the space of complex structures on Sɡ. To this end, the chapter defines quasiconformal maps between surfaces and presents a solution to the resulting Teichmüller's extremal problem. It also considers the correspondence between complex structures and hyperbolic structures, along with the Teichmüller mapping, Teichmüller metric, and the proof of Teichmüller's uniqueness and existence theorems. The fundamental connection between Teichmüller's theorems, holomorphic quadratic differentials, and measured foliations is discussed as well. Finally, the chapter describes the Grötzsch's problem, whose solution is tied to the proof of Teichmüller's uniqueness theorem.


2016 ◽  
Vol 12 (3) ◽  
pp. 4368-4374
Author(s):  
Soo Hwan Kim

In this paper, we extend normed spaces to quasi-normed spaces and prove the generalized Hyers-Ulam stability of a nonic functional equation:$$\aligned&f(x+5y) - 9f(x+4y) + 36f(x+3y) - 84f(x+2y) + 126f(x+y) - 126f(x)\\&\qquad + 84f(x-y)-36f(x-2y)+9f(x-3y)-f(x-4y) = 9 ! f(y),\endaligned$$where $9 ! = 362880$ in quasi-normed spaces.


2013 ◽  
Vol 59 (2) ◽  
pp. 299-320
Author(s):  
M. Eshaghi Gordji ◽  
Y.J. Cho ◽  
H. Khodaei ◽  
M. Ghanifard

Abstract In this paper, we investigate the general solution and the generalized stability for the quartic, cubic and additive functional equation (briefly, QCA-functional equation) for any k∈ℤ-{0,±1} in Menger probabilistic normed spaces.


2019 ◽  
Vol 52 (1) ◽  
pp. 496-502
Author(s):  
Won-Gil Park ◽  
Jae-Hyeong Bae

AbstractIn this paper, we obtain Hyers-Ulam stability of the functional equationsf (x + y, z + w) + f (x − y, z − w) = 2f (x, z) + 2f (y, w),f (x + y, z − w) + f (x − y, z + w) = 2f (x, z) + 2f (y, w)andf (x + y, z − w) + f (x − y, z + w) = 2f (x, z) − 2f (y, w)in 2-Banach spaces. The quadratic forms ax2 + bxy + cy2, ax2 + by2 and axy are solutions of the above functional equations, respectively.


Author(s):  
Ljiljana Arambašić ◽  
Alexander Guterman ◽  
Bojan Kuzma ◽  
Rajna Rajić ◽  
Svetlana Zhilina

Author(s):  
Hüseyin Işık ◽  
Vahid Parvaneh ◽  
Mohammad Reza Haddadi

Sign in / Sign up

Export Citation Format

Share Document