Hypaxial Muscle: Controversial Classification and Controversial Data?

Author(s):  
Karl R. Wotton ◽  
Frank R. Schubert ◽  
Susanne Dietrich
Keyword(s):  
2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Hong Zhang ◽  
Yishi Chen ◽  
Clemencia Colmenares ◽  
Edward Stavnezer

2001 ◽  
Vol 204 (11) ◽  
pp. 1979-1989 ◽  
Author(s):  
Wallace O. Bennett ◽  
Rachel S. Simons ◽  
Elizabeth L. Brainerd

SUMMARY The function of the lateral hypaxial muscles during locomotion in tetrapods is controversial. Currently, there are two hypotheses of lateral hypaxial muscle function. The first, supported by electromyographic (EMG) data from a lizard (Iguana iguana) and a salamander (Dicamptodon ensatus), suggests that hypaxial muscles function to bend the body during swimming and to resist long-axis torsion during walking. The second, supported by EMG data from lizards during relatively high-speed locomotion, suggests that these muscles function primarily to bend the body during locomotion, not to resist torsional forces. To determine whether the results from D. ensatus hold for another salamander, we recorded lateral hypaxial muscle EMGs synchronized with body and limb kinematics in the tiger salamander Ambystoma tigrinum. In agreement with results from aquatic locomotion in D. ensatus, all four layers of lateral hypaxial musculature were found to show synchronous EMG activity during swimming in A. tigrinum. Our findings for terrestrial locomotion also agree with previous results from D. ensatus and support the torsion resistance hypothesis for terrestrial locomotion. We observed asynchronous EMG bursts of relatively high intensity in the lateral and medial pairs of hypaxial muscles during walking in tiger salamanders (we call these ‘α-bursts’). We infer from this pattern that the more lateral two layers of oblique hypaxial musculature, Mm. obliquus externus superficialis (OES) and obliquus externus profundus (OEP), are active on the side towards which the trunk is bending, while the more medial two layers, Mm. obliquus internus (OI) and transversus abdominis (TA), are active on the opposite side. This result is consistent with the hypothesis proposed for D. ensatus that the OES and OEP generate torsional moments to counteract ground reaction forces generated by forelimb support, while the OI and TA generate torsional moments to counteract ground reaction forces from hindlimb support. However, unlike the EMG pattern reported for D. ensatus, a second, lower-intensity burst of EMG activity (‘β-burst’) was sometimes recorded from the lateral hypaxial muscles in A. tigrinum. As seen in other muscle systems, these β-bursts of hypaxial muscle coactivation may function to provide fine motor control during locomotion. The presence of asynchronous, relatively high-intensity α-bursts indicates that the lateral hypaxial muscles generate torsional moments during terrestrial locomotion, but it is possible that the balance of forces from both α- and β-bursts may allow the lateral hypaxial muscles to contribute to lateral bending of the body as well.


Development ◽  
2001 ◽  
Vol 128 (5) ◽  
pp. 743-752 ◽  
Author(s):  
M. Kruger ◽  
D. Mennerich ◽  
S. Fees ◽  
R. Schafer ◽  
S. Mundlos ◽  
...  

Sonic hedgehog (Shh) has been proposed to function as an inductive and trophic signal that controls development of epaxial musculature in vertebrate embryos. In contrast, development of hypaxial muscles was assumed to occur independently of Shh. We here show that formation of limb muscles was severely affected in two different mouse strains with inactivating mutations of the Shh gene. The limb muscle defect became apparent relatively late and initial stages of hypaxial muscle development were unaffected or only slightly delayed. Micromass cultures and cultures of tissue fragments derived from limbs under different conditions with or without the overlaying ectoderm indicated that Shh is required for the maintenance of the expression of myogenic regulatory factors (MRFs) and, consecutively, for the formation of differentiated limb muscle myotubes. We propose that Shh acts as a survival and proliferation factor for myogenic precursor cells during hypaxial muscle development. Detection of a reduced but significant level of Myf5 expression in the epaxial compartment of somites of Shh homozygous mutant embryos at E9.5 indicated that Shh might be dispensable for the initiation of myogenesis both in hypaxial and epaxial muscles. Our data suggest that Shh acts similarly in both somitic compartments as a survival and proliferation factor and not as a primary inducer of myogenesis.


2011 ◽  
Vol 221 (3) ◽  
pp. 167-178 ◽  
Author(s):  
Stefanie E. Windner ◽  
Peter Steinbacher ◽  
Astrid Obermayer ◽  
Barna Kasiba ◽  
Josef Zweimueller-Mayer ◽  
...  

2017 ◽  
Vol 430 (1) ◽  
pp. 90-104 ◽  
Author(s):  
Mohi U. Ahmed ◽  
Ashish K. Maurya ◽  
Louise Cheng ◽  
Erika C. Jorge ◽  
Frank R. Schubert ◽  
...  

Author(s):  
Jason D. PARDO ◽  
Robert HOLMES ◽  
Jason S. ANDERSON

ABSTRACTWe describe a new specimen of the aïstopodOestocephalusfrom Five Points, Ohio, which preserves much of the posterior braincase. The specimen, the largest aïstopod skull described, preserves the postorbital region to the occiput. The posterior braincase has coossified the basioccipital, exoccipitals, and opisthotic. The parasphenoid is rostrally restricted, toothless, and highly vaulted along the cultriform process. The lateral walls of the cultriform process are further reinforced by large longitudinally running, ventral flanges from the parietals. Two large endochondral ventral projections from the basioccipital, previously interpreted as basal tuberosities for hypaxial muscle insertion, are here instead interpreted as articulations for the branchial skeleton. This interpretation is further supported by traces of vasculature that is consistent with what is seen in gill-bearing species. A model for the reorganisation of the basicranial region on the transition from hyomandibula to stapes is proposed, which suggests that gills, or gill-support skeletal elements, might be further distributed along the tetrapod stem than previously thought. These data further support the placement of aïstopods in the tetrapod stem group and require a reconsideration of our understanding of early tetrapod evolution.


2001 ◽  
Vol 239 (2) ◽  
pp. 270-280 ◽  
Author(s):  
Benjamin L. Martin ◽  
Richard M. Harland

1999 ◽  
Vol 296 (1) ◽  
pp. 175-182 ◽  
Author(s):  
Susanne Dietrich

Development ◽  
2000 ◽  
Vol 127 (2) ◽  
pp. 413-424 ◽  
Author(s):  
M.K. Gross ◽  
L. Moran-Rivard ◽  
T. Velasquez ◽  
M.N. Nakatsu ◽  
K. Jagla ◽  
...  

In mammalian embryos, myogenic precursor cells emigrate from the ventral lip of the dermomyotome and colonize the limbs, tongue and diaphragm where they differentiate and form skeletal muscle. Previous studies have shown that Pax3, together with the c-Met receptor tyrosine kinase and its ligand Scatter Factor (SF) are necessary for the migration of hypaxial muscle precursors in mice. Lbx1 and Pax3 are co-expressed in all migrating hypaxial muscle precursors, raising the possibility that Lbx1 regulates their migration. To examine the function of Lbx1 in muscle development, we inactivated the Lbx1 gene by homologous recombination. Mice lacking Lbx1 exhibit an extensive loss of limb muscles, although some forelimb and hindlimb muscles are still present. The pattern of muscle loss suggests that Lbx1 is not required for the specification of particular limb muscles, and the muscle defects that occur in Lbx1(−/−) mice can be solely attributed to changes in muscle precursor migration. c-Met is expressed in Lbx1 mutant mice and limb muscle precursors delaminate from the ventral dermomyotome but fail to migrate laterally into the limb. Muscle precursors still migrate ventrally and give rise to tongue, diaphragm and some limb muscles, demonstrating Lbx1 is necessary for the lateral, but not ventral, migration of hypaxial muscle precursors. These results suggest that Lbx1 regulates responsiveness to a lateral migration signal which emanates from the developing limb.


Sign in / Sign up

Export Citation Format

Share Document