Nonlinear Fracture Mechanics

2020 ◽  
pp. 1840-1846
Author(s):  
John D. Clayton
2018 ◽  
Vol 84 (11) ◽  
pp. 46-51 ◽  
Author(s):  
N. A. Makhutov

The results of comprehensive studies of multifactor processes, mechanisms and criteria for fracture at a variation of the crack-like defect state, loading conditions and mechanical properties of structural materials carried out in the 20th - 21st centuries are presented on the basis of monographic publications and articles published in the journal “Zavodskaya Laboratoriya. Diagnostika Materialov.” Crack resistance of materials and structures has become a key problem of the material science, technology, design, manufacture and service of structures. Fracture mechanics including estimation of the stress-strain and limiting states in a cracks tip formed a scientific basis of the crack resistance analysis Stress intensity factors (linear fracture mechanics) and strain intensity factors (nonlinear fracture mechanics) are accepted as the basic criteria of those states. The basic computational relations for construction of the fracture diagrammes which link the cracks growth with conditions of a static, cyclic, long-term, dynamic loading are presented. Parameters of computational relations are put into correspondence with the features of fracture processes on nano-, micro-, meso- and macrolevels. Prospects of the research and guidelines of further studing crack resistance are discussed.


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 105-107
Author(s):  
Hiroshi Okada

Professor Hiroshi Okada and his team from the Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Japan, are engaged in the field of computational fracture mechanics. This is an area of computational engineering that refers to the creation of numerical methods to approximate the crack evolutions predicted by new classes of fracture mechanics models. For many years, it has been used to determine stress intensity factors and, more recently, has expanded into the simulation of crack nucleation and propagation. In their work, the researchers are proposing new methods for fracture mechanics analysis and solid mechanics analysis.


1986 ◽  
pp. 1189-1195
Author(s):  
T. Watanabe ◽  
S. Ueda ◽  
K. Tagata ◽  
G. Yagawa ◽  
S. Miyazono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document