scholarly journals Incidence Bounds for Complex Algebraic Curves on Cartesian Products

Author(s):  
József Solymosi ◽  
Frank de Zeeuw
2020 ◽  
Vol 2020 (1) ◽  
pp. 9-16
Author(s):  
Evgeniy Konopatskiy

The paper presents a geometric theory of multidimensional interpolation based on invariants of affine geometry. The analytical description of geometric interpolants is performed within the framework of the mathematical apparatus BN-calculation using algebraic curves that pass through preset points. A geometric interpretation of the interaction of parameters, factors, and the response function is presented, which makes it possible to generalize the geometric theory of multidimensional interpolation in the direction of increasing the dimension of space. The conceptual principles of forming the tree of the geometric interpolant model as a geometric basis for modeling multi-factor processes and phenomena are described.


2021 ◽  
Vol 37 (3) ◽  
pp. 907-917
Author(s):  
Martin Kreh ◽  
Jan-Hendrik de Wiljes

AbstractIn 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs. In the same article, the authors proved some results on the solvability of Cartesian products, given solvable or distance 2-solvable graphs. We extend these results to Cartesian products of certain unsolvable graphs. In particular, we prove that ladders and grid graphs are solvable and, further, even the Cartesian product of two stars, which in a sense are the “most” unsolvable graphs.


Topology ◽  
1993 ◽  
Vol 32 (4) ◽  
pp. 845-856 ◽  
Author(s):  
Eugenii Shustin
Keyword(s):  

Nature ◽  
1951 ◽  
Vol 167 (4259) ◽  
pp. 962-962
Author(s):  
H. T. H. PIAGGIO
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document