scholarly journals Inequalities between the Chern numbers of a singular fiber in a family of algebraic curves

2012 ◽  
Vol 365 (7) ◽  
pp. 3373-3396 ◽  
Author(s):  
Jun Lu ◽  
Sheng-Li Tan
2020 ◽  
Vol 2020 (1) ◽  
pp. 9-16
Author(s):  
Evgeniy Konopatskiy

The paper presents a geometric theory of multidimensional interpolation based on invariants of affine geometry. The analytical description of geometric interpolants is performed within the framework of the mathematical apparatus BN-calculation using algebraic curves that pass through preset points. A geometric interpretation of the interaction of parameters, factors, and the response function is presented, which makes it possible to generalize the geometric theory of multidimensional interpolation in the direction of increasing the dimension of space. The conceptual principles of forming the tree of the geometric interpolant model as a geometric basis for modeling multi-factor processes and phenomena are described.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matheus I. N. Rosa ◽  
Massimo Ruzzene ◽  
Emil Prodan

AbstractTwisted bilayered systems such as bilayered graphene exhibit remarkable properties such as superconductivity at magic angles and topological insulating phases. For generic twist angles, the bilayers are truly quasiperiodic, a fact that is often overlooked and that has consequences which are largely unexplored. Herein, we uncover that twisted n-layers host intrinsic higher dimensional topological phases, and that those characterized by second Chern numbers can be found in twisted bi-layers. We employ phononic lattices with interactions modulated by a second twisted lattice and reveal Hofstadter-like spectral butterflies in terms of the twist angle, which acts as a pseudo magnetic field. The phason provided by the sliding of the layers lives on 2n-tori and can be used to access and manipulate the edge states. Our work demonstrates how multi-layered systems are virtual laboratories for studying the physics of higher dimensional quantum Hall effect, and can be employed to engineer topological pumps via simple twisting and sliding.


2021 ◽  
Vol 103 (19) ◽  
Author(s):  
Tomáš Rauch ◽  
Thomas Olsen ◽  
David Vanderbilt ◽  
Ivo Souza
Keyword(s):  

Topology ◽  
1993 ◽  
Vol 32 (4) ◽  
pp. 845-856 ◽  
Author(s):  
Eugenii Shustin
Keyword(s):  

1997 ◽  
Vol 11 (11) ◽  
pp. 1389-1410
Author(s):  
Xiao-Rong Wu-Morrow ◽  
Cecile Dewitt-Morette ◽  
Lev Rozansky

Using the energy Green's function formulation proposed by Niu 1 for particle densities, we construct and clarify the nature of the topological invariant assigned to the Hall conductance in the Hall system of 2-dimensional noninteracting electron gas; we identify this topological quantum number explicitly as the first Chern number of a complex vector bundle over a 2-torus parametrized by the magnetic potential (a1, a2); the fibres are finite dimensional spaces spanned by eigenfunctions of the system with energy eigenvalues below the Fermi energy. Other cases can be treated by a similar procedure, namely, by recognizing that some physical quantities are integrals of curvatures defined on a nontrivial finite dimensional complex bundle. Therefore, in suitable units, they take integer values. We treat, as an example, the electron density response to a dilation of a periodic potential. The integer in this case is the number of Bloch bands. The quantization of the Hall conductance and density response is also shown in the presence of disorder.


2015 ◽  
Vol 115 (25) ◽  
Author(s):  
Scott A. Skirlo ◽  
Ling Lu ◽  
Yuichi Igarashi ◽  
Qinghui Yan ◽  
John Joannopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document