Nevanlinna Theory over Function Fields

Author(s):  
Junjiro Noguchi ◽  
Jörg Winkelmann
2006 ◽  
Vol 17 (04) ◽  
pp. 417-440 ◽  
Author(s):  
KATSUTOSHI YAMANOI

We prove a second main theorem type estimate in Nevanlinna theory when a target space is a family of curves. This estimate unifies the truncated q-small function theorem, and the height inequality for curves over function fields.


Author(s):  
CLEMENS FUCHS ◽  
SEBASTIAN HEINTZE

Abstract Let $ (G_n)_{n=0}^{\infty } $ be a nondegenerate linear recurrence sequence whose power sum representation is given by $ G_n = a_1(n) \alpha _1^n + \cdots + a_t(n) \alpha _t^n $ . We prove a function field analogue of the well-known result in the number field case that, under some nonrestrictive conditions, $ |{G_n}| \geq ( \max _{j=1,\ldots ,t} |{\alpha _j}| )^{n(1-\varepsilon )} $ for $ n $ large enough.


1988 ◽  
Vol 62 (2) ◽  
pp. 145-161 ◽  
Author(s):  
R. Gold ◽  
H. Kisilevsky
Keyword(s):  

2020 ◽  
Vol 160 (2) ◽  
pp. 519-521
Author(s):  
S. Baier ◽  
A. Bansal ◽  
R. K. Singh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document