Extensive Cervicothoracic Laminoplastic Decompression of the Spinal Cord: A New Method of Posterior Decompression for Thoracic Myelopathy Caused by Ossification of the Posterior Longitudinal Ligament

OPLL ◽  
1997 ◽  
pp. 185-192 ◽  
Author(s):  
Nobuyuki Tsuzuki ◽  
Yasuyoshi Wadano ◽  
Shin-ichi Kikuchi
2017 ◽  
Vol 13 (6) ◽  
pp. 661-669 ◽  
Author(s):  
Shiro Imagama ◽  
Kei Ando ◽  
Kazuyoshi Kobayashi ◽  
Tetsuro Hida ◽  
Kenyu Ito ◽  
...  

Abstract BACKGROUND Surgery for thoracic ossification of the posterior longitudinal ligament (T-OPLL) is still challenging, and factors for good surgical outcomes are unknown. OBJECTIVE To identify factors for good surgical outcomes with prospective and comparative study. METHODS Seventy-one consecutive patients who underwent posterior decompression and instrumented fusion were divided into good or poor outcome groups based on ≥50% and <50% recovery rates for the Japanese Orthopaedic Association score. Preoperative, intraoperative, and postoperative findings were compared in the 2 groups, and significant factors for a good outcome were analyzed. RESULTS Patients with a good outcome (76%) had significantly lower nonambulatory rate and positive prone and supine position tests preoperatively; lower rates of T-OPLL, ossification of the ligamentum flavum, high-intensity area at the same level, thoracic spinal cord alignment difference, and spinal canal stenosis on preoperative magnetic resonance imaging; lower estimated blood loss; higher rates of intraoperative spinal cord floating and absence of deterioration of intraoperative neurophysiological monitoring; and lower rates of postoperative complications (P < .0005). In multivariate logistic regression analysis, negative prone and supine position test (odds ratio [OR]: 17.00), preoperative ambulatory status (OR: 6.05), absence of T-OPLL, ossification of the ligamentum flavum, high-intensity area at the same level (OR: 5.84), intraoperative spinal cord floating (OR: 4.98), and lower estimated blood loss (OR: 1.01) were significant factors for a good surgical outcome. CONCLUSION This study demonstrated that early surgery is recommended during these positive factors. Appropriate surgical planning based on preoperative thoracic spinal cord alignment difference, as well as sufficient spinal cord decompression and reduction of complications using intraoperative ultrasonography and intraoperative neurophysiological monitoring, may improve surgical outcomes.


2018 ◽  
Vol 29 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Hiroshi Uei ◽  
Yasuaki Tokuhashi ◽  
Masashi Oshima ◽  
Masafumi Maseda ◽  
Masahiro Nakahashi ◽  
...  

OBJECTIVEThe range of decompression in posterior decompression and fixation for ossification of the posterior longitudinal ligament in the thoracic spine (T-OPLL) can be established using an index of spinal cord decompression based on the ossification-kyphosis angle (OKA) measured in the sagittal view on MRI. However, an appropriate OKA cannot be achieved in some cases, and posterior fixation is applied in cases with insufficient decompression. Moreover, it is unclear whether spinal cord decompression of the ventral side is essential for the treatment of OPLL. In this retrospective analysis, the efficacy of posterior decompression and fixation performed for T-OPLL was investigated after the range of posterior decompression had been set using the OKA.METHODSThe MRI-based OKA is the angle from the superior margin at the cranial vertebral body of the decompression site and from the lower posterior margin at the caudal vertebral body of the decompression site to the prominence of the maximum OPLL. Posterior decompression and fixation were performed in 20 patients. The decompression range was set so that the OKA was ≤ 23° or the minimum if this value could not be achieved. Cases in which an OKA ≤ 23° could and could not be achieved were designated as groups U (13 patients) and O (7 patients), respectively. The mean patient ages were 50.5 and 62.1 years (p = 0.03) and the mean preoperative Japanese Orthopaedic Association (JOA) scores were 5.9 and 6.0 (p = 0.9) in groups U and O, respectively. The postoperative JOA score, rate of improvement of the JOA score, number of levels fused, number of decompression levels, presence of an echo-free space during surgery, operative time, intraoperative blood loss, and perioperative complications were examined.RESULTSIn groups U and O, the mean rates of improvement in the JOA score were 50.0% and 45.6% (p = 0.3), the numbers of levels fused were 6.7 and 6.4 (p = 0.8), the numbers of decompression levels were 5.9 and 7.4 (p = 0.3), an echo-free space was noted during surgery in 92.3% and 42.9% of cases (p = 0.03), the operative times were 292 and 238 minutes (p = 0.3), and the intraoperative blood losses were 422 and 649 ml (p = 0.7), and transient aggravation of paralysis occurred as a perioperative complication in 2 and 1 patient, respectively.CONCLUSIONSThere was no significant difference with regard to the recovery rate of the JOA score between patients with (group U) and without (group O) sufficient spinal cord decompression. The first-line surgical procedure of posterior decompression and fixation with the range of posterior decompression set as an OKA ≤ 23° before surgery involves less risk of postoperative aggravation of paralysis and may result in a better outcome.


2019 ◽  
Vol 31 (3) ◽  
pp. 326-333
Author(s):  
Ryo Kanematsu ◽  
Junya Hanakita ◽  
Toshiyuki Takahashi ◽  
Yosuke Tomita ◽  
Manabu Minami

OBJECTIVESurgical management of thoracic ossification of the posterior longitudinal ligament (OPLL) remains challenging because of the anatomical complexity of the thoracic spine and the fragility of the thoracic spinal cord. Several surgical approaches have been described, but it remains unclear which of these is the most effective. The present study describes the microsurgical removal of OPLL in the middle thoracic level via the transthoracic anterolateral approach without spinal fusion, including the surgical outcome and operative tips.METHODSBetween 2002 and 2017, a total of 8 patients with thoracic myelopathy due to OPLL were surgically treated via the transthoracic anterolateral approach without spinal fusion. The surgical techniques are described in detail. Clinical outcome, surgical complications, and the pre- and postoperative thoracic kyphotic angle were assessed.RESULTSThe mean patient age at the time of surgery was 55 years (range 47–77 years). There were 5 women and 3 men. The surgically treated levels were within T3–9. The clinical symptoms and Japanese Orthopaedic Association (JOA) score improved postoperatively in 7 cases, but did not change in 1 case. The mean JOA score increased from 6.4 preoperatively to 7.5 postoperatively (recovery rate 26%). Intraoperative CSF leakage occurred in 4 cases, and was successfully treated with fibrin glue sealing and spinal drainage. The mean follow-up period was 82.6 months (range 15.3–169 months). None of the patients had deterioration of the thoracic kyphotic angle.CONCLUSIONSAnterior decompression is the logical and ideal procedure to treat thoracic myelopathy caused by OPLL on the concave side of the spinal cord; however, this procedure is technically demanding. Microsurgery via the transthoracic anterolateral approach enables direct visualization of the thoracic ventral ossified lesion. The use of microscopic procedures might negate the need for bone grafting or spinal instrumentation.


Neurosurgery ◽  
2017 ◽  
Vol 80 (5) ◽  
pp. 800-808 ◽  
Author(s):  
Shiro Imagama ◽  
Kei Ando ◽  
Zenya Ito ◽  
Kazuyoshi Kobayashi ◽  
Tetsuro Hida ◽  
...  

Abstract BACKGROUND: Thoracic ossification of the posterior longitudinal ligament (T-OPLL) is treated surgically with instrumented posterior decompression and fusion. However, the factors determining the outcome of this approach and the efficacy of additional resection of T-OPLL are unknown. OBJECTIVE: To identify these factors in a prospective study at a single institution. METHODS: The subjects were 70 consecutive patients with beak-type T-OPLL who underwent posterior decompression and dekyphotic fusion and had an average of 4.8 years of follow-up (minimum of 2 years). Of these patients, 4 (6%; group R) had no improvement or aggravation, were not ambulatory for 3 weeks postoperatively, and required additional T-OPLL resection; while 66 (group N) required no further T-OPLL resection. Clinical records, gait status, intraoperative ultrasonography, intraoperative neurophysiological monitoring (IONM), plain radiography, computed tomography and magnetic resonance imaging findings, and Japanese Orthopaedic Association (JOA) score were compared between the groups. RESULTS: Preoperatively, patients in group R had significantly higher rates of severe motor paralysis, nonambulatory status, positive prone and supine position test, no spinal cord floating in intraoperative ultrasonography, and deterioration of IONM at the end of surgery (P < .05). In preoperative radiography, the OPLL spinal cord kyphotic angle difference in fused area, OPLL length, and OPLL canal stenosis were significantly higher in group R (P < .05). At final follow-up, JOA scores improved similarly in both groups. CONCLUSION: Preoperative severe motor paralysis, nonambulatory status, positive prone and supine position test, radiographic spinal cord compression due to beak-type T-OPLL, and intraoperative residual spinal cord compression and deterioration of IONM were associated with ineffectiveness of posterior decompression and fusion with instrumentation. Our 2-stage strategy may be appropriate for beak-type T-OPLL surgery.


Sign in / Sign up

Export Citation Format

Share Document