Automorphisms of Galois groups over number fields

2001 ◽  
pp. 847-852
Author(s):  
Ichiro Satake ◽  
Genjiro Fujisaki ◽  
Kazuya Kato ◽  
Masato Kurihara ◽  
Shoichi Nakajima
Keyword(s):  
1996 ◽  
Vol 60 (2) ◽  
pp. 332-372 ◽  
Author(s):  
W.-D. Geyer ◽  
C.U. Jensen
Keyword(s):  

1986 ◽  
Vol 104 (2) ◽  
pp. 231-260 ◽  
Author(s):  
Walter Feit
Keyword(s):  

2018 ◽  
Vol 237 ◽  
pp. 166-187
Author(s):  
SOSUKE SASAKI

Let $k$ be an imaginary quadratic field with $\operatorname{Cl}_{2}(k)\simeq V_{4}$. It is known that the length of the Hilbert $2$-class field tower is at least $2$. Gerth (On 2-class field towers for quadratic number fields with$2$-class group of type$(2,2)$, Glasgow Math. J. 40(1) (1998), 63–69) calculated the density of $k$ where the length of the tower is $1$; that is, the maximal unramified $2$-extension is a $V_{4}$-extension. In this paper, we shall extend this result for generalized quaternion, dihedral, and semidihedral extensions of small degrees.


2005 ◽  
Vol 16 (06) ◽  
pp. 567-593
Author(s):  
T. M. GENDRON ◽  
A. VERJOVSKY

This paper concerns the description of holomorphic extensions of algebraic number fields. After expanding the notion of adele class group to number fields of infinite degree over ℚ, a hyperbolized adele class group [Formula: see text] is assigned to every number field K/ℚ. The projectivization of the Hardy space ℙ𝖧•[K] of graded-holomorphic functions on [Formula: see text] possesses two operations ⊕ and ⊗ giving it the structure of a nonlinear field extension of K. We show that the Galois theory of these nonlinear number fields coincides with their discrete counterparts in that 𝖦𝖺𝗅(ℙ𝖧•[K]/K) = 1 and 𝖦𝖺𝗅(ℙ𝖧•[L]/ℙ𝖧•[K]) ≅ 𝖦𝖺𝗅(L/K) if L/K is Galois. If K ab denotes the maximal abelian extension of K and 𝖢K is the idele class group, it is shown that there are embeddings of 𝖢K into 𝖦𝖺𝗅⊕(ℙ𝖧•[K ab ]/K) and 𝖦𝖺𝗅⊗(ℙ𝖧•[K ab ]/K), the "Galois groups" of automorphisms preserving ⊕ (respectively, ⊗) only.


2018 ◽  
Vol 166 (3) ◽  
pp. 599-617 ◽  
Author(s):  
FARSHID HAJIR ◽  
CHRISTIAN MAIRE

AbstractFor Γ = ℤp, Iwasawa was the first to construct Γ-extensions over number fields with arbitrarily large μ-invariants. In this work, we investigate other uniform pro-p groups which are realisable as Galois groups of towers of number fields with arbitrarily large μ-invariant. For instance, we prove that this is the case if p is a regular prime and Γ is a uniform pro-p group admitting a fixed-point-free automorphism of odd order dividing p−1. Both in Iwasawa's work, and in the present one, the size of the μ-invariant appears to be intimately related to the existence of primes that split completely in the tower.


1988 ◽  
Vol 116 (1) ◽  
pp. 243-250 ◽  
Author(s):  
M Schacher ◽  
J Sonn

Sign in / Sign up

Export Citation Format

Share Document