Kinetics of the Heterogeneous Solid State Process

Author(s):  
Pritam Deb
2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Kyoung A Cho ◽  
Insil Choi ◽  
Il Won Kim

Mesocrystal formation is one of the new paradigms of the nonclassical crystallization, where the assembly of crystal domains is observed. Also, it has been recently employed in studies on drug formulation to utilize controlled dissolution of the drug domains. In this report, ibuprofen was attempted to form hybrid mesocrystals with calcium carbonate crystals. Two polymorphs of calcium carbonate (aragonite and calcite) were used during the solid-state process of ball milling. Structural analyses confirmed the mesocrystal formation of ibuprofen with aragonite but not with calcite. The origin of the observed behavior was found from the higher affinity of ibuprofen to aragonite, especially its (0 1 0) surface, compared to calcite. The hybrid mesocrystals of ibuprofen and aragonite showed the environment-responsive release behavior, where the stability of aragonite was the controlling factor for the release kinetics of ibuprofen.


Author(s):  
N. Weslati ◽  
I. Gharbi ◽  
M. Hamdi ◽  
A. Oueslati ◽  
M. Gargouri ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 723
Author(s):  
Mahesh Muraleedharan Nair ◽  
Stéphane Abanades

The CeO2/CeO2−δ redox system occupies a unique position as an oxygen carrier in chemical looping processes for producing solar fuels, using concentrated solar energy. The two-step thermochemical ceria-based cycle for the production of synthesis gas from methane and solar energy, followed by CO2 splitting, was considered in this work. This topic concerns one of the emerging and most promising processes for the recycling and valorization of anthropogenic greenhouse gas emissions. The development of redox-active catalysts with enhanced efficiency for solar thermochemical fuel production and CO2 conversion is a highly demanding and challenging topic. The determination of redox reaction kinetics is crucial for process design and optimization. In this study, the solid-state redox kinetics of CeO2 in the two-step process with CH4 as the reducing agent and CO2 as the oxidizing agent was investigated in an original prototype solar thermogravimetric reactor equipped with a parabolic dish solar concentrator. In particular, the ceria reduction and re-oxidation reactions were carried out under isothermal conditions. Several solid-state kinetic models based on reaction order, nucleation, shrinking core, and diffusion were utilized for deducing the reaction mechanisms. It was observed that both ceria reduction with CH4 and re-oxidation with CO2 were best represented by a 2D nucleation and nuclei growth model under the applied conditions. The kinetic models exhibiting the best agreement with the experimental reaction data were used to estimate the kinetic parameters. The values of apparent activation energies (~80 kJ·mol−1 for reduction and ~10 kJ·mol−1 for re-oxidation) and pre-exponential factors (~2–9 s−1 for reduction and ~123–253 s−1 for re-oxidation) were obtained from the Arrhenius plots.


2015 ◽  
Vol 2015 (7) ◽  
pp. 521-524 ◽  
Author(s):  
N. F. Ibrokhimov ◽  
I. N. Ganiev ◽  
A. E. Berdiev ◽  
N. I. Ganieva

Sign in / Sign up

Export Citation Format

Share Document