grain growth kinetics
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 37)

H-INDEX

39
(FIVE YEARS 6)

2021 ◽  
Vol 5 (4) ◽  
pp. 137
Author(s):  
Richard Turner

The thermodynamic heat-transfer mechanisms, which occur as a heated billet cools in an air environment, are of clear importance in determining the rate at which a heated billet cools. However, in finite element modelling simulations, the convective heat transfer term of the heat transfer mechanisms is often reduced to simplified or guessed constants, whereas thermal conductivity and radiative emissivity are entered as detailed temperature dependent functions. As such, in both natural and forced convection environments, the fundamental physical relationships for the Nusselt number, Reynolds number, Raleigh parameter, and Grashof parameter were consulted and combined to form a fundamental relationship for the natural convective heat transfer as a temperature-dependent function. This function was calculated using values for air as found in the literature. These functions were then applied within an FE framework for a simple billet cooling model, compared against FE predictions with constant convective coefficient, and further compared with experimental data for a real steel billet cooling. The modified, temperature-dependent convective transfer coefficient displayed an improved prediction of the cooling curves in the majority of experiments, although on occasion a constant value model also produced very similar predicted cooling curves. Finally, a grain growth kinetics numerical model was implemented in order to predict how different convective models influence grain size and, as such, mechanical properties. The resulting findings could offer improved cooling rate predictions for all types of FE models for metal forming and heat treatment operations.


Author(s):  
P. Rajendra ◽  
K. R. Phaneesh ◽  
C. M. Ramesha ◽  
Madeva Nagaral ◽  
V Auradi

In metallurgy, the microstructure study is very important to evaluate the properties and performances of a material. The Monte Carlo method is applied in so many fields of Engineering Science and it is a very effective method to examine the topology of the computer-simulated structures and exactly resembles the static behavior of the atoms. The effective 2D simulation was performed to understand the grain growth kinetics, under the influence of second phase particles (impurities) is a base to control the microstructure. The matrix size and [Formula: see text]-states are optimized. The grain growth exponent was investigated in a polycrystalline material using the [Formula: see text]-state Potts model under the Monte Carlo simulation. The effect of particles present within the belly of grains and pinning on the grain boundaries are observed. The mean grain size under second phase particles obeys the square root dependency.


2021 ◽  
Vol 119 (6) ◽  
pp. 061903
Author(s):  
Gustavo Bertoli ◽  
Lucas B. Otani ◽  
Amy J. Clarke ◽  
Claudio S. Kiminami ◽  
Francisco G. Coury

2021 ◽  
Vol 864 ◽  
pp. 158816
Author(s):  
Galina Kozhina ◽  
Valentin Mitrofanov ◽  
Olga Fedorova ◽  
Andrey Fetisov ◽  
Aidar Murzakaev ◽  
...  

2021 ◽  
Vol 561 ◽  
pp. 116820
Author(s):  
Hongzhan Fei ◽  
Ulrich Faul ◽  
Tomoo Katsura

2021 ◽  
Vol 13 (5) ◽  
pp. 741-747
Author(s):  
Hongpei Ran ◽  
Huiling Du ◽  
Cuiying Ma ◽  
Yingying Zhao ◽  
Danni Feng ◽  
...  

AgNbO3-based lead-free ceramics are a promising candidate material for capacitors, where thermal stability is a key property for applications in severe and complex environments. This study investigated the fabrication of Ag1-3xBixNb1-3/5x(Zn1/2Ti1/2)xO3 (ABNZT-x) (x = 0, 0.005, 0.01, 0.02, or 0.04) via a solid-state reaction under oxygen flow. The microstructure, dielectric properties, and impedance spectra of the AgNbO3 samples co-doped with Bi3+, Zn2+, and Ti4+ were systematically characterized. All samples exhibited an orthorhombic phase structure, where the average grain size decreased with increasing co-doping level, the grain growth kinetics was studied by phase-field simulation. The phase transition temperatures became lower and the maximum permittivity values decreased. These findings demonstrated that enhanced dielectric thermal stability had been achieved. The grain conduction effect was observed during the impedance spectroscopy analysis, where the calculated activation energy decreased with increasing co-doping level. This ABNZT-x ceramic system exhibited stable dielectric properties, and shows promise for use as a functional material in electronic devices.


Sign in / Sign up

Export Citation Format

Share Document