Mathematical Truth Regained

Author(s):  
Robert Hanna
Keyword(s):  
Author(s):  
Tim Button ◽  
Sean Walsh

This chapter considers whether internal categoricity can be used to leverage any claims about mathematical truth. We begin by noting that internal categoricity allows us to introduce a truth-operator which gives an object-language expression to the supervaluationist semantics. In this way, the univocity discussed in previous chapters might seem to secure an object-language expression of determinacy of truth-value; but this hope falls short, because such truth-operators must be carefully distinguished from truth-predicates. To introduce these truth-predicates, we outline an internalist attitude towards model theory itself. We then use this to illuminate the cryptic conclusions of Putnam's justly-famous paper ‘Models and Reality’. We close this chapter by presenting Tarski’s famous result that truth for lower-order languages can be defined in higher-order languages.


1984 ◽  
pp. 377-393 ◽  
Author(s):  
Carl G. Hempel
Keyword(s):  

2005 ◽  
Vol 11 (3) ◽  
pp. 351-376 ◽  
Author(s):  
Penelope Maddy

Despite some discomfort with this grandly philosophical topic, I do in fact hope to address a venerable pair of philosophical chestnuts: mathematical truth and existence. My plan is to set out three possible stands on these issues, for an exercise in compare and contrast. A word of warning, though, to philosophical purists (and perhaps of comfort to more mathematical readers): I will explore these philosophical positions with an eye to their interconnections with some concrete issues of set theoretic method.Let me begin with a brief look at what to count as ‘philosophy’. To some extent, this is a matter of usage, and mathematicians sometimes classify as ‘philosophical’ any considerations other than outright proofs. So, for example, discussions of the propriety of particular mathematical methods would fall under this heading: should we prefer analytic or synthetic approaches in geometry? Should elliptic functions be treated in terms of explicit representations (as in Weierstrass) or geometrically (as in Riemann)? Should we allow impredicative definitions? Should we restrict ourselves to a logic without bivalence or the law of the excluded middle? Also included in this category would be the trains of thought that shaped our central concepts: should a function always be defined by a formula? Should a group be required to have an inverse for every element? Should ideal divisors be defined contextually or explicitly, treated computationally or abstractly? In addition, there are more general questions concerning mathematical values, aims and goals: Should we strive for powerful theories or low-risk theories? How much stress should be placed on the fact or promise of physical applications? How important are interconnections between the various branches of mathematics? These philosophical questions of method naturally include several peculiar to set theory: should set theorists focus their efforts on drawing consequences for areas of interest to mathematicians outside mathematical logic? Should exploration of the standard axioms of ZFC be preferred to the exploration and exploitation of new axioms? How should axioms for set theory be chosen? What would a solution to the Continuum Problem look like?


1984 ◽  
pp. 403-420 ◽  
Author(s):  
Paul Benacerraf
Keyword(s):  

2020 ◽  
Author(s):  
Vasil Dinev Penchev

Many researchers determine the question “Why anything rather than nothing?” as the most ancient and fundamental philosophical problem. Furthermore, it is very close to the idea of Creation shared by religion, science, and philosophy, e.g. as the “Big Bang”, the doctrine of “first cause” or “causa sui”, the Creation in six days in the Bible, etc.Thus, the solution of quantum mechanics, being scientific in fact, can be interpreted also philosophically, and even religiously. However, only the philosophical interpretation is the topic of the text.The essence of the answer of quantum mechanics is:1. The creation is necessary in a rigorous mathematical sense. Thus, it does not need any choice, free will, subject, God, etc. to appear. The world exists in virtue of mathematical necessity, e.g. as any mathematical truth such as 2+2=4.2. The being is less than nothing rather than more than nothing. So, the creation is not an increase of nothing, but the decrease of nothing: it is a deficiency in relation of nothing. Time and its “arrow” are the way of that diminishing or incompleteness to nothing.


Author(s):  
Amos Funkenstein

This chapter explores how eternal truths are created in a radical sense of the word; even mathematical theorems are contingent upon God’s will. What the most radical defenders of divine omnipotence in the Middle Ages hardly ever asserted, Descartes did without hesitation: that God could invalidate the most basic mathematical operations. Meanwhile, Spinoza argued that divine omnipotence and necessity of nature are one and the same, since all that is really possible in the world is also as necessary as any mathematical truth. The chapter shows how medieval theology introduced the distinction between the two aspects of God’s power so as to enlarge as far as possible the horizon of that which is possible to God without violating reason.


2020 ◽  
pp. 239-275
Author(s):  
Jared Warren

This chapter addresses the second major challenge for the extension of conventionalism from logic to mathematics: the richness of mathematical truth. The chapter begins by distinguishing indeterminacy from pluralism and clarifying the crucial notion of open-endedness. It then critically discusses the two major strategies for securing arithmetical categoricity using open-endedness; one based on a collapse theorem, the other on a kind of anti-overspill idea. With this done, a new argument for the categoricity of arithmetic is then presented. In subsequent discussion, the philosophical importance of this categoricity result is called into question to some degree. The categoricity argument is then supplemented by an appeal to the infinitary omega rule, and an argument is given that beings like us can actually follow the omega rule without any violation of Church’s thesis. Finally, the chapter discusses the extension of this type of approach beyond arithmetic, to set theory and the rest of mathematics.


Sign in / Sign up

Export Citation Format

Share Document