the big bang
Recently Published Documents


TOTAL DOCUMENTS

1450
(FIVE YEARS 342)

H-INDEX

49
(FIVE YEARS 7)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 50
Author(s):  
Ana Alonso-Serrano ◽  
Marek Liška

This work is based on the formalism developed in the study of the thermodynamics of spacetime used to derive Einstein equations from the proportionality of entropy within an area. When low-energy quantum gravity effects are considered, an extra logarithmic term in the area is added to the entropy expression. Here, we present the derivation of the quantum modified gravitational dynamics from this modified entropy expression and discuss its main features. Furthermore, we outline the application of the modified dynamics to cosmology, suggesting the replacement of the Big Bang singularity with a regular bounce.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 51
Author(s):  
Luca Fabbri

We consider the fourth-order differential theory of gravitation to treat the problem of singularity avoidance: studying the short-distance behaviour in the case of black-holes and the big-bang we are going to see a way to attack the issue from a general perspective.


2022 ◽  
Author(s):  
A.S. Agrawal ◽  
S K Tripathy ◽  
Sarmistha Pal ◽  
B Mishra

Abstract In this work, we have studied some bouncing cosmologies in the frame work of $f(R,T)$ gravity. The bouncing scenario has been formulated to avoid the big bang singularity. The physical and geometrical parameters are investigated. The effect of the extended gravity theory on the dynamical parameters of the model is investigated. It is found that, the $f(R,T)$ gravity parameter affects the cosmic dynamics substantially. We have also, tested the model through the calculation of the cosmographic coefficients and the $Om(z)$ parameter. A scalar field reconstruction of the bouncing scenario is also carried out. The stability of the model are tested under linear, homogeneous and isotropic perturbations.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 177
Author(s):  
Ahmed Barhoum ◽  
María Luisa García-Betancourt ◽  
Jaison Jeevanandam ◽  
Eman A. Hussien ◽  
Sara A. Mekkawy ◽  
...  

Nanomaterials are becoming important materials in several fields and industries thanks to their very reduced size and shape-related features. Scientists think that nanoparticles and nanostructured materials originated during the Big Bang process from meteorites leading to the formation of the universe and Earth. Since 1990, the term nanotechnology became very popular due to advances in imaging technologies that paved the way to specific industrial applications. Currently, nanoparticles and nanostructured materials are synthesized on a large scale and are indispensable for many industries. This fact fosters and supports research in biochemistry, biophysics, and biochemical engineering applications. Recently, nanotechnology has been combined with other sciences to fabricate new forms of nanomaterials that could be used, for instance, for diagnostic tools, drug delivery systems, energy generation/storage, environmental remediation as well as agriculture and food processing. In contrast with traditional materials, specific features can be integrated into nanoparticles, nanostructures, and nanosystems by simply modifying their scale, shape, and composition. This article first summarizes the history of nanomaterials and nanotechnology. Followed by the progress that led to improved synthesis processes to produce different nanoparticles and nanostructures characterized by specific features. The content finally presents various origins and sources of nanomaterials, synthesis strategies, their toxicity, risks, regulations, and self-aggregation.


2022 ◽  
Author(s):  
THEODORE MODIS

In the spirit of punctuated equilibrium, complexity is quantified relatively in terms of the spacing between equally important evolutionary turning points (milestones). Thirteen data sets of such milestones, obtained from a variety of scientific sources, provide data on the most important complexity jumps between the big bang and today. Forecasts for future complexity jumps are obtained via exponential and logistic fits on the data. The quality of the fits and common sense dictate that the forecast by the logistic function should be retained. This forecast stipulates that we have already reached the maximum rate of growth for complexity, and that in the future, complexity's rate of change (and the rate of change in our lives) will be declining. One corollary is that we are roughly halfway through the lifetime of the universe. Another result is that complexity's rate of growth has built up to its present high level via seven evolutionary subprocesses, themselves amenable to logistic description.


2022 ◽  
Vol 29 (1) ◽  
pp. e100477
Author(s):  
Geeth Silva ◽  
Tim Bourne ◽  
Graeme Hall ◽  
Shriyam Patel ◽  
Mohammed Qasim Rauf ◽  
...  

IntroductionUniversity Hospitals Leicester has codeveloped, with Nervecentre, an Electronic Prescribing and Medicines Administration System that meets specific clinical and interoperability demands of the National Health Service (NHS).MethodsThe system was developed through a frontline-led and agile approach with a project team consisting of clinicians, Information Technology (IT) specialists and the vendor’s representatives over an 18-month period.ResultsThe system was deployed successfully with more than a thousand transcriptions during roll-out. Despite the high caseload and novelty of the system, there was no increase in error rates within the first 3 months of roll-out. Healthcare professionals perceived the new system as efficient with improved clinical workflow, and safe through an integrated medication alert system.DiscussionThis case study demonstrates how NHS trusts can successfully co-develop, with vendors, new IT systems which meet interoperability standards such as Fast Healthcare Interoperability Resources, while improving front line clinical experience.ConclusionAlternative methods to the ‘big bang’ deployment of IT projects, such as ‘gradual implementation’, must be demonstrated and evaluated for their ability to deliver digital transformation projects in the NHS successfully.


2021 ◽  
Vol 34 (4) ◽  
pp. 429-463
Author(s):  
Harry Ian Epstein

A novel quantum mechanical framework in discrete space and time leads to the derivation of the relativistic energy equation and a potential path toward quantum gravity. A unique approach to geometry is also derived where pregeometric points containing intrinsic compactified geometries generate a topologically 4D cosmos with a local dynamical 3D geometry. An interpretation of the quantum mechanics wavefunction is considered as longitudinal density waves traveling through dynamical pregeometric points. Similarly, general relativity can be described as density variations of the pregeometric points caused by matter-energy distribution. A primordial quantum (Higgs) field emerging at the big bang that generates all the other quantum fields is considered. A four-dimensional structure of black holes, and dark matter and energy are discussed.


Sign in / Sign up

Export Citation Format

Share Document