Climate Change Impacts on Plant Biomass Growth

Author(s):  
Mohammad Ali
2022 ◽  
pp. 65-80
Author(s):  
Oloiva Maria Tavira ◽  
José Tadeu Marques Aranha ◽  
Maria Raquel Lucas

The production of bioenergy and biofertilizers based on animal and plant biomass is a crucial pillar in circular economy (CE). CE conceptual model and main aims are closely related to the 3 “R” (reduce, reuse, and recycle) rule, which is to improve the use of resources, minimize waste, and assure sustainability. Although bioenergy offers many opportunities and could be an alternative to fossil fuels use, the path for a broader implementation of this type of activity is still long. This study marks the starting point or direction of research to be taken, ensuring the existence of benefits from plant and animal biomass for the production of bioenergy and biofertilizer, as well as the contributions of this type of production to the circular economy and the mitigation of the climate change impacts.


Author(s):  
Dharumarajan S. ◽  
Veeramani S. ◽  
Kalaiselvi Beeman ◽  
Lalitha M. ◽  
Janani N. ◽  
...  

Land degradation and desertification have been graded as a major environmental and social dispute in most of the emerging countries. Changes in temperature, wind speed, and precipitation patterns will influence plant biomass production, land use, land cover, soil moisture, infiltration rate, runoff and crop management, and ultimately, land degradation. Close relations between climate change and land degradation processes have been perceived in the past decades. Climate change models and land use models should be combined with hydrologic/erosion models to accurately compute or predict climate change impacts on land degradation. This chapter introduces the advancements in modeling of impact of climate changes in land degradation and need for the critical investigation to better understand and forecast the responses of land degradation processes to a changing climate in the future.


2022 ◽  
pp. 1374-1387
Author(s):  
Dharumarajan S. ◽  
Veeramani S. ◽  
Kalaiselvi Beeman ◽  
Lalitha M. ◽  
Janani N. ◽  
...  

Land degradation and desertification have been graded as a major environmental and social dispute in most of the emerging countries. Changes in temperature, wind speed, and precipitation patterns will influence plant biomass production, land use, land cover, soil moisture, infiltration rate, runoff and crop management, and ultimately, land degradation. Close relations between climate change and land degradation processes have been perceived in the past decades. Climate change models and land use models should be combined with hydrologic/erosion models to accurately compute or predict climate change impacts on land degradation. This chapter introduces the advancements in modeling of impact of climate changes in land degradation and need for the critical investigation to better understand and forecast the responses of land degradation processes to a changing climate in the future.


2019 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

Sign in / Sign up

Export Citation Format

Share Document