Fatigue Crack Extension, a General Mechanism

Author(s):  
Olav Helgeland
1978 ◽  
Vol 100 (4) ◽  
pp. 416-420 ◽  
Author(s):  
D. P. Wilhem ◽  
M. M. Ratwani

Crack growth resistance for both static (rising load) and for cyclic fatigue crack growth has been shown to be a continuous function over a range of 0.1 μm to 10 cm in crack extension for 2024-T3 aluminum. Crack growth resistance to each fatigue cycle of crack extension is shown to approach the materials ordinary undirectional static crack resistance value when the cyclic stress ratio is zero. The fatigue crack extension is averaged over many cycles and is correlated with the maximum value of the crack tip stress intensity, Kmax. A linear plot of crack growth resistance for fatigue and static loading data shows similar effects of thickness, stress ratio, and other parameters. The effect of cyclic stress ratio on crack growth resistance for 2219 aluminum indicates the magnitude of differences in resistance when plotted to a linear scale. Prediction of many of these trends is possible using one of several available crack growth data correlating techniques. It appears that a unique resistance curve, dependent on material, crack orientation, thickness, and stress/physical environment, can be developed for crack extensions as small as 0.076 μm (3 μ inches). This wide range, crack growth resistance curve is seen of immense potential for use in both fatigue and fracture studies.


2015 ◽  
Vol 64 (4) ◽  
pp. 323-329 ◽  
Author(s):  
Hidetoshi KOBAYASHI ◽  
Noboru KONDA ◽  
Joy-A-Ka SUTEP ◽  
Ketaro HORIKAWA ◽  
Takeshi YAMAUCHI

2009 ◽  
Vol 75 (759) ◽  
pp. 1447-1453
Author(s):  
Haruo SAKAMOTO ◽  
Hiromichi ISHIDUKA ◽  
Makoto AKAMA ◽  
Kenichi TANAKA

1992 ◽  
Vol 58 (546) ◽  
pp. 186-191
Author(s):  
Chobin MAKABE ◽  
Masaya ITOKAZU ◽  
Katumi OHBA ◽  
Hideo KANESHIRO

Author(s):  
B. Andrews ◽  
G. P. Potirniche

Growing demand for clean, affordable energy has driven the power industry towards generation plants with higher thermal efficiency and higher operating temperatures. ASTM Grade 91 is a high chromium (9Cr-1Mo) creep resistant steel commonly used in high temperature pressure vessel and piping applications. These service conditions often involve a combination of stationary and cyclic loads at elevated temperatures. Lifecycle assessments of components under such conditions require modeling of both creep and fatigue behaviors. This paper develops two approaches to modeling mixed creep and fatigue crack growth for lifetime assessment of high service temperature components. Both approaches model fatigue crack growth using the Paris law integrated over the number of lifetime cyclic reversals to obtain crack extension. A strip yield model is used to characterize the crack tip stress-strain fields. The first approach employed an explicit method to approximate creep crack growth using C* as a crack tip parameter characterizing creep crack extension. The Norton power law was explicitly solved to model the primary and secondary stages of creep. The second approach used an implicit method to solve a set of constitutive equations based on properties of the material microstructure to model all creep stages. Constitutive equations were fit to experimental data collected at stresses 10–60% of yield and temperatures 550–650°C. These methods were compared to published experimental data under purely stationary loads, purely cyclic loads and mixed loading. Both models showed good agreement with experimental data in the stress and temperature conditions considered.


Sign in / Sign up

Export Citation Format

Share Document