Solutions of geometrical non-linear problems of stiffened plates and shells by the finite element method

1987 ◽  
pp. 379-397
Author(s):  
Liu Zheng-Xing ◽  
Feng Tai-Hua ◽  
Li Ding-Xia
1995 ◽  
Vol 117 (1) ◽  
pp. 11-16 ◽  
Author(s):  
G. Sinha ◽  
M. Mukhopadhyay

Stiffened plates and shells often find wide application in bridge engineering, aircraft, ship and allied industries owing to its high strength to weight ratios. They are often subjected to dynamic loading such as air blast loading, for which detailed dynamic analysis is required to study the structure under these conditions. In the present approach, the dynamic response of stiffened plates and shells has been investigated by the finite element method employing a high precision arbitrary-shaped triangular shell element in which stiffeners may lie in any arbitrary direction within the element. This provides greater flexibility in the mesh generation. The governing undamped equations of motion have been solved by Newmark’s method for direct time integration. The dynamic response of plates and shells with or without stiffeners, subjected to different kinds of load-history have been studied and results are compared with the published analytical results.


1981 ◽  
Vol 1 (3) ◽  
pp. 253-266 ◽  
Author(s):  
I. CHRISTIE ◽  
D. F. GRIFFITHS ◽  
A. R. MITCHELL ◽  
J. M. SANZ-SERNA

2015 ◽  
Vol 62 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Iwona Adamiec-Wójcik ◽  
Andrzej Nowak ◽  
Stanisław Wojciech

Abstract The rigid finite element method (RFEM) has been used mainly for modelling systems with beam-like links. This paper deals with modelling of a single set of electrodes consisting of an upper beam with electrodes, which are shells with complicated shapes, and an anvil beam. Discretisation of the whole system, both the beams and the electrodes, is carried out by means of the rigid finite element method. The results of calculations concerned with free vibrations of the plates are compared with those obtained from a commercial package of the finite element method (FEM), while forced vibrations of the set of electrodes are compared with those obtained by means of the hybrid finite element method (HFEM) and experimental measurements obtained on a special test stand.


Sign in / Sign up

Export Citation Format

Share Document