Capillary Free Boundaries governed by the Navier-Stokes Equations

Author(s):  
C. Cuvelier ◽  
A. Segal ◽  
A. A. van Steenhoven
2012 ◽  
Vol 1 (33) ◽  
pp. 8 ◽  
Author(s):  
Luca Cavallaro ◽  
Fabio Dentale ◽  
Giovanna Donnarumma ◽  
Enrico Foti ◽  
Rosaria E. Musumeci ◽  
...  

Until recently, physical models were the only way to investigate into the details of breakwaters behavior under wave attack. From the numerical point of view, the complexity of the fluid dynamic processes involved has so far hindered the direct application of Navier-Stokes equations within the armour blocks, due to the complex geometry and the presence of strongly non stationary flows, free boundaries and turbulence. In the present work the most recent CFD technology is used to provide a new and more reliable approach to the design analysis of breakwaters, especially in connection with run-up and overtopping. The solid structure is simulated within the numerical domain by overlapping individual virtual elements to form the empty spaces delimited by the blocks. Thus, by defining a fine computational grid, an adequate number of nodes is located within the interstices and a complete solution of the full hydrodynamic equations is carried out. In the work presented here the numerical simulations are carried out by integrating the three-dimensional Reynolds Average Navier-Stokes Equations coupled with the RNG turbulence model and a Volume of Fluid Method used to handle the dynamics of the free surface. The aim of the present work is to investigate the reliability of this approach as a design tool. Two different breakwaters are considered, both located in Southern Sicily: one a typical quarry stone breakwater, another a more complex design incorporating a spill basin and an armoured layer made up by Coreloc® blocks.


2002 ◽  
Vol 13 (2) ◽  
pp. 205-224 ◽  
Author(s):  
V. V. PUKHNACHOV

Three-dimensional nonstationary flow of a viscous incompressible liquid is investigated in a layer, driven by a nonuniform distribution of temperature on its free boundaries. If the temperature given on the layer boundaries is quadratically dependent on horizontal coordinates, external mass forces are absent, and the motion starts from rest then the free boundary problem for the Navier–Stokes equations has an ‘exact’ solution in terms of two independent variables. Here the free boundaries of the layer remain parallel planes and the distance between them must be also determined. In present paper, we formulate conditions for both the unique solvability of the reduced problem globally in time and the collapse of the solution in finite time. We further study qualitative properties of the solution such as its behaviour for large time (in the case of global solvability of the problem), and the asymptotics of the solution near the collapse moment in the opposite case.


2016 ◽  
Vol 791 ◽  
Author(s):  
Matthew Chantry ◽  
Laurette S. Tuckerman ◽  
Dwight Barkley

Turbulent–laminar intermittency, typically in the form of bands and spots, is a ubiquitous feature of the route to turbulence in wall-bounded shear flows. Here we study the idealised shear between stress-free boundaries driven by a sinusoidal body force and demonstrate quantitative agreement between turbulence in this flow and that found in the interior of plane Couette flow – the region excluding the boundary layers. Exploiting the absence of boundary layers, we construct a model flow that uses only four Fourier modes in the shear direction and yet robustly captures the range of spatiotemporal phenomena observed in transition, from spot growth to turbulent bands and uniform turbulence. The model substantially reduces the cost of simulating intermittent turbulent structures while maintaining the essential physics and a direct connection to the Navier–Stokes equations. We demonstrate the generic nature of this process by introducing stress-free equivalent flows for plane Poiseuille and pipe flows that again capture the turbulent–laminar structures seen in transition.


Sign in / Sign up

Export Citation Format

Share Document