scholarly journals RUBBLE MOUND BREAKWATER OVERTOPPING: ESTIMATION OF THE RELIABILITY OF A 3D NUMERICAL SIMULATION

2012 ◽  
Vol 1 (33) ◽  
pp. 8 ◽  
Author(s):  
Luca Cavallaro ◽  
Fabio Dentale ◽  
Giovanna Donnarumma ◽  
Enrico Foti ◽  
Rosaria E. Musumeci ◽  
...  

Until recently, physical models were the only way to investigate into the details of breakwaters behavior under wave attack. From the numerical point of view, the complexity of the fluid dynamic processes involved has so far hindered the direct application of Navier-Stokes equations within the armour blocks, due to the complex geometry and the presence of strongly non stationary flows, free boundaries and turbulence. In the present work the most recent CFD technology is used to provide a new and more reliable approach to the design analysis of breakwaters, especially in connection with run-up and overtopping. The solid structure is simulated within the numerical domain by overlapping individual virtual elements to form the empty spaces delimited by the blocks. Thus, by defining a fine computational grid, an adequate number of nodes is located within the interstices and a complete solution of the full hydrodynamic equations is carried out. In the work presented here the numerical simulations are carried out by integrating the three-dimensional Reynolds Average Navier-Stokes Equations coupled with the RNG turbulence model and a Volume of Fluid Method used to handle the dynamics of the free surface. The aim of the present work is to investigate the reliability of this approach as a design tool. Two different breakwaters are considered, both located in Southern Sicily: one a typical quarry stone breakwater, another a more complex design incorporating a spill basin and an armoured layer made up by Coreloc® blocks.

Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


2003 ◽  
pp. 55-82
Author(s):  
M. Despotovic ◽  
Milun Babic ◽  
D. Milovanovic ◽  
Vanja Sustersic

This paper describes a three-dimensional compressible Navier-Stokes code, which has been developed for analysis of turbocompressor blade rows and other internal flows. Despite numerous numerical techniques and statement that Computational Fluid Dynamics has reached state of the art, issues related to successful simulations represent valuable database of how particular tech?nique behave for a specifie problem. This paper deals with rapid numerical method accurate enough to be used as a design tool. The mathematical model is based on System of Favre averaged Navier-Stokes equations that are written in relative frame of reference, which rotates with constant angular velocity around axis of rotation. The governing equations are solved using finite vol?ume method applied on structured grids. The numerical procedure is based on the explicit multistage Runge-Kutta scheme that is coupled with modem numerical procedures for convergence acceleration. To demonstrate the accuracy of the described numer?ical method developed software is applied to numerical analysis of flow through impeller of axial turbocompressor, and obtained results are compared with available experimental data.


1988 ◽  
Vol 110 (3) ◽  
pp. 315-325 ◽  
Author(s):  
L. T. Tam ◽  
A. J. Przekwas ◽  
A. Muszynska ◽  
R. C. Hendricks ◽  
M. J. Braun ◽  
...  

A numerical model based on a transformed, conservative form of the three-dimensional Navier-Stokes equations and an analytical model based on “lumped” fluid parameters are presented and compared with studies of modeled rotor/bearing/seal systems. The rotor destabilizing factors are related to the rotative character of the flow field. It is shown that these destabilizing factors can be reduced through a descrease in the fluid average circumferential velocity. However, the rotative character of the flow field is a complex three-dimensional system with bifurcated secondary flow patterns that significantly alter the fluid circumferential velocity. By transforming the Navier-Stokes equations to those for a rotating observer and using the numerical code PHOENICS-84 with a nonorthogonal body fitted grid, several numerical experiments were carried out to demonstrate the character of this complex flow field. In general, fluid injection and/or preswirl of the flow field opposing the shaft rotation significantly intensified these secondary recirculation zones and thus reduced the average circumferential velocity, while injection or preswirl in the direction of rotation significantly weakened these zones. A decrease in average circumferential velocity was related to an increase in the strength of the recirculation zones and thereby promoted stability. The influence of the axial flow was analyzed. The lumped model of fluid dynamic force based on the average circumferential velocity ratio (as opposed to the bearing/seal coefficient model) well described the obtained results for relatively large but limited ranges of parameters. This lumped model is extremely useful in rotor/bearing/seal system dynamic analysis and should be widely recommended. Fluid dynamic forces and leakage rates were calculated and compared with seal data where the working fluid was bromotrifluoromethane (CBrF3). The radial and tangential force predictions were in reasonable agreement with selected experimental data. Nonsynchronous perturbation provided meaningful information for system lumped parameter identification from numerical experiment data.


Author(s):  
Yannis Kallinderis ◽  
Hyung Taek Ahn

Numerical prediction of vortex-induced vibrations requires employment of the unsteady Navier-Stokes equations. Current Navier-Stokes solvers are quite expensive for three-dimensional flow-structure applications. Acceptance of Computational Fluid Dynamics as a design tool for the offshore industry requires improvements to current CFD methods in order to address the following important issues: (i) stability and computation cost of the numerical simulation process, (ii) restriction on the size of the allowable time-step due to the coupling of the flow and structure solution processes, (iii) excessive number of computational elements for 3-D applications, and (iv) accuracy and computational cost of turbulence models used for high Reynolds number flow. The above four problems are addressed via a new numerical method which employs strong coupling between the flow and the structure solutions. Special coupling is also employed between the Reynolds-averaged Navier-Stokes equations and the Spalart-Allmaras turbulence model. An element-type independent spatial discretization scheme is also presented which can handle general hybrid meshes consisting of hexahedra, prisms, pyramids, and tetrahedral.


2018 ◽  
Vol 210 ◽  
pp. 04027
Author(s):  
Tatiana Kudryashova’ ◽  
Sergey Polyakov ◽  
Nikita Tarasov

The computational fluid dynamic research in this work has focused on the problem of full-scale three-dimensional modelling water purification processes by the electromagnetic method. Presently, this method of purification was used in the final stage of processing for the production of ultrapure water. In spite of many field experiments, detailed data on such processes can be obtained only by the mathematical modelling. This way allows us to take into account many aspects, for example: real three-dimensional geometry, physical structure of the purification system, heterogeneous composition of the impurities, etc. And also, the mathematical modelling helps to optimize many parameters in order to improve a design of the purification system. Within the framework of the modelling problem, one of the important aspects is the correct description of the three-dimensional flow inside a specific purification system. For this purpose, various mathematical models and numerical approaches are implemented. In this paper, the flow calculation was realized on basis of the Navier-Stokes equations.


2002 ◽  
Vol 13 (2) ◽  
pp. 205-224 ◽  
Author(s):  
V. V. PUKHNACHOV

Three-dimensional nonstationary flow of a viscous incompressible liquid is investigated in a layer, driven by a nonuniform distribution of temperature on its free boundaries. If the temperature given on the layer boundaries is quadratically dependent on horizontal coordinates, external mass forces are absent, and the motion starts from rest then the free boundary problem for the Navier–Stokes equations has an ‘exact’ solution in terms of two independent variables. Here the free boundaries of the layer remain parallel planes and the distance between them must be also determined. In present paper, we formulate conditions for both the unique solvability of the reduced problem globally in time and the collapse of the solution in finite time. We further study qualitative properties of the solution such as its behaviour for large time (in the case of global solvability of the problem), and the asymptotics of the solution near the collapse moment in the opposite case.


Author(s):  
MSR Chandra Murty ◽  
PK Sinha ◽  
D Chakraborty

Transient numerical simulations are carried out to study missile motion in a vertical launch system and to estimate the effect of missile exhaust in the adjoining launch structure. Three-dimensional Navier–Stokes equations along with k–ɛ turbulence model and species transport equations are solved using commercial computational fluid dynamics software. Dynamic grid movement is adopted and one degree of freedom trajectory equations are integrated with the computational fluid dynamic solver to obtain the instantaneous position of the missile. Multi-zone grid generation approach with sliding interface method through layering technique is adopted to address the changing boundary problem. The computational methodology is applied to study the missile motion in a scale-down test configuration as well as in the flight condition. The computations capture all essential flow features of test and flight conditions in active cell as well as in adjacent cells. Parametric studies are conducted to study the effect geometrical features and measurement uncertainty in the input data. Computed pressures in the adjacent cells in the launch system match better (∼12%) with the experimental and flight results compared to distant cells.


1990 ◽  
Vol 112 (1) ◽  
pp. 5-11 ◽  
Author(s):  
T. C. Vu ◽  
W. Shyy

Viscous flow analysis based on the full Reynolds-averaged Navier-Stokes equations is being applied to successfully predict turbulent flow characteristics and energy losses in different hydraulic turbine components. It allows the designer to evaluate the hydraulic performance of alternative designs before proceeding with laboratory testing or to perform elaborate parametric study to optimize the hydraulic design. In this paper, the applications of three-dimensional viscous flow analysis as an analytical design tool for elbow draft tube and spiral casing are presented and their impact on engineering design assessed.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Sign in / Sign up

Export Citation Format

Share Document