The concept of basic number is applied to the development of a simple analogue of the Sturm–Liouville system of the second order. This is then employed to deduce a family of q -orthogonal functions, which leads to a generalization of the Fourier and Fourier–Bessel expansions. The numerical approximation of basic integrals is discussed and some aspects of the evaluation of C a (q; x) are mentioned. A few of the zeros of this function are listed, and, in conclusion, an indication is given of the possibility of applying the analysis presented in this paper to thé study of stochastic processes and time-series.


1979 ◽  
Vol 22 (3) ◽  
pp. 277-290 ◽  
Author(s):  
Garret J. Etgen ◽  
Roger T. Lewis

Let ℋ be a Hilbert space, let ℬ = (ℋ, ℋ) be the B*-algebra of bounded linear operators from ℋ to ℋ with the uniform operator topology, and let ℒ be the subset of ℬ consisting of the self-adjoint operators. This article is concerned with the second order self-adjoint differential equation


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

In this chapter, three different methods are described for obtaining nice operators generated in some L2 space by second-order differential expressions and either Dirichlet or Neumann boundary conditions. The first is based on sesquilinear forms and the determination of m-sectorial operators by Kato’s First Representation Theorem; the second produces an m-accretive realization by a technique due to Kato using his distributional inequality; the third has its roots in the work of Levinson and Titchmarsh and gives operators T that are such that iT is m-accretive. The class of such operators includes the self-adjoint operators, even ones that are not bounded below. The essential self-adjointness of Schrödinger operators whose potentials have strong local singularities are considered, and the quantum-mechanical interpretation of essential self-adjointness is discussed.


Author(s):  
Yûichirô Kakihara

Banach space valued stochastic processes of weak second order on a locally compact abelian group G G is considered. These processes are recognized as operator valued processes on G G . More fully, letting U \mathfrak {U} be a Banach space and H \mathfrak {H} a Hilbert space, we study B ( U , H ) B(\mathfrak {U},\mathfrak {H}) -valued processes. Since B ( U , H ) B(\mathfrak {U},\mathfrak {H}) has a B ( U , U ∗ ) B(\mathfrak {U},\mathfrak {U}^*) -valued gramian, every B ( U , H ) B(\mathfrak {U},\mathfrak {H}) -valued process has a B ( U , U ∗ ) B(\mathfrak {U},\mathfrak {U}^*) -valued covariance function. Using this property we can define operator stationarity, operator harmonizability and operator V V -boundedness for B ( U , H ) B(\mathfrak {U},\mathfrak {H}) -valued processes, in addition to scalar ones. Interrelations among these processes are obtained together with the operator stationary dilation.


Sign in / Sign up

Export Citation Format

Share Document