The physiology of aromatic hydrocarbon degrading bacteria

Author(s):  
Mark R. Smith
2019 ◽  
Vol 7 (2) ◽  
pp. 33 ◽  
Author(s):  
Eric Marques ◽  
Gislaine Silva ◽  
João Dias ◽  
Eduardo Gross ◽  
Moara Costa ◽  
...  

Restricted contact with the external environment has allowed the development of microbial communities adapted to the oligotrophy of caves. However, nutrients can be transported to caves by drip water and affect the microbial communities inside the cave. To evaluate the influence of aromatic compounds carried by drip water on the microbial community, two limestone caves were selected in Brazil. Drip-water-saturated and unsaturated sediment, and dripping water itself, were collected from each cave and bacterial 16S rDNA amplicon sequencing and denaturing gradient gel electrophoresis (DGGE) of naphthalene dioxygenase (ndo) genes were performed. Energy-dispersive X-ray spectroscopy (EDX) and atomic absorption spectroscopy (AAS) were performed to evaluate inorganic nutrients, and GC was performed to estimate aromatic compounds in the samples. The high frequency of Sphingomonadaceae in drip water samples indicates the presence of aromatic hydrocarbon-degrading bacteria. This finding was consistent with the detection of naphthalene and acenaphthene and the presence of ndo genes in drip-water-related samples. The aromatic compounds, aromatic hydrocarbon-degrading bacteria and 16S rDNA sequencing indicate that aromatic compounds may be one of the sources of energy and carbon to the system and the drip-water-associated bacterial community contains several potentially aromatic hydrocarbon-degrading bacteria. To the best of our knowledge, this is the first work to present compelling evidence for the presence of aromatic hydrocarbon-degrading bacteria in cave drip water.


1996 ◽  
Vol 42 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Brian A. Wrenn ◽  
Albert D. Venosa

A most-probable-number (MPN) procedure was developed to separately enumerate aliphatic and aromatic hydrocarbon degrading bacteria, because most of the currently available methods are unable to distinguish between these two groups. Separate 96-well microtiter plates are used to estimate the sizes of these two populations. The alkane-degrader MPN method uses hexadecane as the selective growth substrate and positive wells are detected by reduction of iodonitrotetrazolium violet, which is added after incubation for 2 weeks at 20 °C. Polycyclic aromatic hydrocarbon degraders are grown on a mixture of phenanthrene, anthracene, fluorene, and dibenzothiophene in a second plate. Positive wells turn yellow to greenish-brown from accumulation of the partial oxidation products of the aromatic substrates and they can be scored after a 3-week incubation period. These MPN procedures are accurate and selective. For pure cultures, heterotrophic plate counts on a nonselective medium and the appropriate MPN procedure provide similar estimates of the population density. Bacteria that cannot grow on the selective substrates do not produce false positive responses even when the inoculum density is very high. Thus, this method, which is simple enough for use in the field, provides reliable estimates for the density and composition of hydrocarbon-degrading microbial populations.Key words: most probable number, polycyclic aromatic hydrocarbon, alkane, hydrocarbon, bacteria.


Sign in / Sign up

Export Citation Format

Share Document